




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第十一章 三角形【考點(diǎn)連接】一認(rèn)識(shí)三角形1關(guān)于三角形的概念及其按角的分類定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。2三角形的分類:三角形按內(nèi)角的大小分為三類:銳角三角形、直角三角形、鈍角三角形。三角形按邊分為兩類:等腰三角形和不等邊三角形。2關(guān)于三角形三條邊的關(guān)系(判斷三條線段能否構(gòu)成三角形的方法、比較線段的長(zhǎng)短)根據(jù)公理“兩點(diǎn)之間,線段最短”可得:三角形任意兩邊之和大于第三邊。字母表示:三角形任意兩邊之差小于第三邊。字母表示:3與三角形有關(guān)的線段:三角形的角平分線、中線和高三角形的角平分線:三角形的一個(gè)角的平分線與對(duì)邊相交形成的線段;三角形的中線:連接三角形的一個(gè)頂
2、點(diǎn)與對(duì)邊中點(diǎn)的線段,三角形任意一條中線將三角形分成面積相等的兩個(gè)部分;三角形的高:過(guò)三角形的一個(gè)頂點(diǎn)做對(duì)邊的垂線,這條垂線段叫做三角形的高。注意:三角形的角平分線、中線和高都是線段;任意一個(gè)三角形都有三條角平分線,三條中線和三條高;任意一個(gè)三角形的三條角平分線、三條中線都在三角形的內(nèi)部。但三角形的高卻有不同的位置:4三角形的內(nèi)角與外角(1)三角形的內(nèi)角和180°(2)三角形的外角和360°(3) 三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和;(常用來(lái)求角度)三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。(常用來(lái)比較角的大小)5. 多邊形的內(nèi)角與外角多邊形的
3、內(nèi)角和與外角和(識(shí)記)(1)多邊形的內(nèi)角和:(n-2)180°(2)多邊形的外角和:360°引申:(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)能作(n-3)條對(duì)角線;(2)多邊形有條對(duì)角線。(3)從n邊形的一個(gè)頂點(diǎn)出發(fā)能將n邊形分成(n-2)個(gè)三角形;6鑲嵌(1)同一種正三邊形、正四邊形、正六邊形可以進(jìn)行平面鑲嵌;(2)正三角形與正四邊形、正三角形與正六邊形可以進(jìn)行平面鑲嵌;(1)同一種任意三角形、任意四邊形可以進(jìn)行鑲嵌?!镜湫屠}】考點(diǎn)1:三角形的分類例題1:具備下列條件的三角形中,不是直角三角形的是( )。a:a+b=c b:a=b= c c:a=90°-b d:a-b=90
4、例題2:等腰三角形一腰上的高與另一腰的夾角為30°,則頂角的度數(shù)為( )a60° b120° c60°或150° d60°或120°如圖,1+2+3+4等于多少度; 例題3:若一個(gè)三角形的一個(gè)外角小于與它相鄰的內(nèi)角,則這個(gè)三角形是( ).a、直角三角形 b、銳角三角形 c、鈍角三角形 d、無(wú)法確定考點(diǎn)2:三角形的內(nèi)角和、外角和相關(guān)的計(jì)算與證明例題1:若三角形的三個(gè)外角的比為3:4:5,則這個(gè)三角形為( )a銳角三角形 b直角三角形 c等邊三角形 d鈍角三角形例題2:已知等腰三角形的一個(gè)外角為150°,則它的底角為_(kāi)
5、.練習(xí):1、如圖,若aec=100°,b=45°,c=38°,則dfe等于( )a. 125° b. 115° c. 110° d. 105° _3題圖_150°_50°_3_2_1_2題圖_140°_80°_1_1題圖_f_e_a_c_b_d2、如圖,1=_.3、如圖,則1=_,2=_,3=_,4、已知等腰三角形的一個(gè)外角是120°,則它是( )a.等腰直角三角形 b.一般的等腰三角形 c.等邊三角形 d.等腰鈍角三角形5、如果三角形的一個(gè)外角和與它不相鄰的兩個(gè)內(nèi)角的和為1
6、80°,那么與這個(gè)外角相鄰的內(nèi)角的度數(shù)為( )a. 30° b. 60° c. 90° d. 120° 6、已知三角形的三個(gè)外角的度數(shù)比為234,則它的最大內(nèi)角的度數(shù)( ).a. 90° b. 110° c. 100° d. 120° 例3. 如圖(1)所示,中,的平分線交于點(diǎn),求證:. (1) (
7、2) (3)變式1:如圖(2)所示,中,內(nèi)角和外角的平分線交于點(diǎn),求證:.變式2:如圖(3)所示,中,外角的平分線交于點(diǎn),求證:.例4. 已知:如圖,在中,分別是邊上的高,相交于,求的度數(shù)??键c(diǎn)3:多邊形內(nèi)角和及外交和例題1:若一個(gè)多邊形的內(nèi)角和與外角和相等,則這個(gè)多邊形是()a.三角形 b六邊形 c五邊形 d四邊形例題2:下列說(shuō)法錯(cuò)誤的是( )a邊數(shù)越多,多邊形的外角和越大 b多邊形每增加一條邊,內(nèi)角和就增加180°c正多邊形的每一個(gè)外角隨著邊數(shù)的增加而減小 d六邊形
8、的每一個(gè)內(nèi)角都是120°例題3:一個(gè)多邊形內(nèi)角和與其中一個(gè)外角的總和為1360°這個(gè)多邊形的邊數(shù)為 .例題4:一個(gè)多邊形的每一個(gè)外角都是24°,則此多邊形的內(nèi)角和()a2160° b2340° c2700° d2880°練習(xí):1一個(gè)多邊形內(nèi)角和是10800,則這個(gè)多邊形的邊數(shù)為 ( )a、 6 b、 7 c、 8 d、 92一個(gè)多邊形的內(nèi)角和是外角和的2倍,它是( )a、 四邊形 b、 五邊形 c、 六邊形 d、 八邊形3一個(gè)多邊形的邊數(shù)增加一倍,它的內(nèi)角和增加( )a. 180° b. 360° c.
9、(n-2)·180° d. n·1804、若一個(gè)多邊形的內(nèi)角和與外角和相加是1800°,則此多邊形是( )a、八邊形 b、十邊形 c、十二邊形 d、十四邊形5、多邊形的每一個(gè)內(nèi)角都等于150°,則從此多邊形一個(gè)頂點(diǎn)出發(fā)引出的對(duì)角線有 條。6、將一個(gè)三角形截去一個(gè)角后,所形成的一個(gè)新的多邊形的內(nèi)角和_ _。7、一個(gè)多邊形的內(nèi)角和與外角和之比是52,則這個(gè)多邊形的邊數(shù)為_(kāi)??键c(diǎn)4:鑲嵌例題1:裝飾大世界出售下列形狀的地磚:正方形;長(zhǎng)方形;正五邊形;正六邊形。若只選購(gòu)其中某一種地磚鑲嵌地面,可供選用的地磚有( ) a. b. c. d. 例題2:邊長(zhǎng)
10、相等的下列兩種正多邊形的組合,不能作平面鑲嵌的是( )a.正方形與正三角形b.正五邊形與正三角形 c.正六邊形與正三角形d.正八邊形與正方形練習(xí):1. 下列正多邊中,不能鋪滿地面的是( )a、正方形 b、 正五邊形 c、 等邊三角形 d、 正六邊形2. 下列正多邊形的組合中,不能夠鋪滿地面的是( ).a.正六邊形和正三角形 b.正三角形和正方形 c.正八邊形和正方形 d.正五邊形和正八邊形3. 用正三角形和正十二邊形鑲嵌,可能情況有( )種.a、1 b、2 c、3 d、44. 某裝飾公司出售下列形狀的地磚:正方形;長(zhǎng)方形;正五邊形;正六邊形.若只選購(gòu)其中某一種地磚鑲嵌地面,可供選用的地磚共有(
11、 )種.a、1 b、2 c、3 d、45. 小李家裝修地面,已有正三角形形狀的地磚,現(xiàn)打算購(gòu)買另一種不同形狀的正多邊形地磚,與正三角形地磚在同一頂點(diǎn)處作平面鑲嵌,則小李不應(yīng)購(gòu)買的地磚形狀是( )a、正方形 b、正六邊形 c、正八邊形 d、正十二邊形6. 用正三角形和正四邊形作平面鑲嵌,在一個(gè)頂點(diǎn)周圍,可以有_ _個(gè)正三角形和_ _個(gè)正四邊形。7. 如圖,第n個(gè)圖案中有白色地磚_塊. _ 第1個(gè)_ 第3個(gè)_ 第?2個(gè)中考試練:1.如圖所示,已知在三角形紙片abc中,bc=3,ab=6,bca=90°在ac上取一點(diǎn)e,以be為折痕,使ab的一部分與bc重合,a與bc延長(zhǎng)線上的點(diǎn)d重合,則de的長(zhǎng)度為( )a.6b.3 c.d. edcab2.如圖:abc的周長(zhǎng)為30cm,把a(bǔ)bc的邊ac對(duì)折,使頂點(diǎn)c和點(diǎn)a重合,折痕交bc邊于點(diǎn)d,交ac邊與點(diǎn)e,連接ad,若ae=4cm,則abd的周長(zhǎng)是(). a.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉(xiāng)鎮(zhèn)食堂供貨合同范例
- 保安審計(jì)合同范例
- 中介門面出租合同范例
- 小兒弱視課件
- 區(qū)塊鏈技術(shù)與醫(yī)療教育融合的路徑
- 區(qū)塊鏈技術(shù)改善供應(yīng)鏈金融業(yè)務(wù)透明度的實(shí)踐
- 醫(yī)療信息泄露風(fēng)險(xiǎn)評(píng)估與防范措施
- 烏魯木齊離婚律師合同范例
- 醫(yī)械科技與創(chuàng)新中的安全性管理與應(yīng)用研究進(jìn)展
- 2025-2030年路面炭污清洗劑項(xiàng)目商業(yè)計(jì)劃書(shū)
- 教學(xué)勇氣:漫步教師心靈
- 醫(yī)務(wù)人員法律法規(guī)知識(shí)培訓(xùn)課件
- 2022年消毒技術(shù)規(guī)范
- 大學(xué)生就業(yè)指導(dǎo)職業(yè)生涯規(guī)劃書(shū)
- 中國(guó)電信股份有限公司廣東公司4G四期規(guī)劃基站(廣州、清遠(yuǎn)、韶關(guān)分冊(cè))項(xiàng)目環(huán)境影響報(bào)告表
- 健康照明技術(shù)研究
- 充電樁工程施工組織設(shè)計(jì)施工組織
- DL-T 5850-2021 電氣裝置安裝工程 高壓電器施工及驗(yàn)收規(guī)范
- 多層螺旋CT原理及臨床應(yīng)用
- 年產(chǎn)3.0萬(wàn)噸二甲醚裝置分離精餾工段的設(shè)計(jì)
- 驗(yàn)房項(xiàng)目詳細(xì)表格
評(píng)論
0/150
提交評(píng)論