![高一數(shù)學(xué)教學(xué)資料 2.1 數(shù)列的概念與簡單表示法第1課時課件_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/b2b8c568-8844-4fc1-8db7-a164ce18bfa5/b2b8c568-8844-4fc1-8db7-a164ce18bfa51.gif)
![高一數(shù)學(xué)教學(xué)資料 2.1 數(shù)列的概念與簡單表示法第1課時課件_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/b2b8c568-8844-4fc1-8db7-a164ce18bfa5/b2b8c568-8844-4fc1-8db7-a164ce18bfa52.gif)
![高一數(shù)學(xué)教學(xué)資料 2.1 數(shù)列的概念與簡單表示法第1課時課件_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/b2b8c568-8844-4fc1-8db7-a164ce18bfa5/b2b8c568-8844-4fc1-8db7-a164ce18bfa53.gif)
![高一數(shù)學(xué)教學(xué)資料 2.1 數(shù)列的概念與簡單表示法第1課時課件_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/b2b8c568-8844-4fc1-8db7-a164ce18bfa5/b2b8c568-8844-4fc1-8db7-a164ce18bfa54.gif)
![高一數(shù)學(xué)教學(xué)資料 2.1 數(shù)列的概念與簡單表示法第1課時課件_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/b2b8c568-8844-4fc1-8db7-a164ce18bfa5/b2b8c568-8844-4fc1-8db7-a164ce18bfa55.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、【課標(biāo)要求課標(biāo)要求】 1了解數(shù)列、通項公式的概念;了解數(shù)列是自變量為正整數(shù)的一了解數(shù)列、通項公式的概念;了解數(shù)列是自變量為正整數(shù)的一 類函數(shù)類函數(shù) 2能根據(jù)通項公式確定數(shù)列的某一項能根據(jù)通項公式確定數(shù)列的某一項 3能根據(jù)數(shù)列的前幾項寫出數(shù)列的一個通項公式能根據(jù)數(shù)列的前幾項寫出數(shù)列的一個通項公式第第1課時數(shù)列的概念與通項公式課時數(shù)列的概念與通項公式21數(shù)列的概念與簡單表示法數(shù)列的概念與簡單表示法1 1、數(shù)列的概念、數(shù)列的概念(1)數(shù)列:按照數(shù)列:按照_排列的一列數(shù)稱為數(shù)列;數(shù)列的一般形排列的一列數(shù)稱為數(shù)列;數(shù)列的一般形式可以寫成式可以寫成a1,a2,a3,an,簡記為,簡記為an(2)項:數(shù)列中
2、的項:數(shù)列中的_叫做這個數(shù)列的項排在第一位的數(shù)叫做這個數(shù)列的項排在第一位的數(shù)稱為這個數(shù)列的第稱為這個數(shù)列的第1項項(通常也叫做通常也叫做_),排在第,排在第n位的數(shù)稱為位的數(shù)稱為這個數(shù)列的這個數(shù)列的_一定順序一定順序每一個數(shù)每一個數(shù)首項首項第第n項項 :數(shù)列與數(shù)集有什么不同?數(shù)列與數(shù)集有什么不同?提示提示:數(shù)列中的數(shù)是有序的,而數(shù)集中的數(shù)是無序的,數(shù):數(shù)列中的數(shù)是有序的,而數(shù)集中的數(shù)是無序的,數(shù)列中的數(shù)可以相同而數(shù)集中的數(shù)是互異的列中的數(shù)可以相同而數(shù)集中的數(shù)是互異的2 2、數(shù)列的分類、數(shù)列的分類(1)根據(jù)數(shù)列的項數(shù)可以將數(shù)列分為兩類:根據(jù)數(shù)列的項數(shù)可以將數(shù)列分為兩類:有窮數(shù)列有窮數(shù)列項數(shù)項數(shù)_
3、的數(shù)列的數(shù)列無窮數(shù)列無窮數(shù)列項數(shù)項數(shù)_的數(shù)列的數(shù)列(2)按照數(shù)列的每一項隨序號變化的情況分類:按照數(shù)列的每一項隨序號變化的情況分類:遞增數(shù)列遞增數(shù)列從第從第2項起,每一項都項起,每一項都_它的前一項的它的前一項的數(shù)列;數(shù)列;遞減數(shù)列遞減數(shù)列從第從第2項起,每一項都項起,每一項都_它的前一項的它的前一項的數(shù)列;數(shù)列;常數(shù)列常數(shù)列各項各項_的數(shù)列;的數(shù)列;擺動數(shù)列擺動數(shù)列從第從第2項起,有些項大于它的前一項,有項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列些項小于它的前一項的數(shù)列有限有限無限無限大于大于小于小于相等相等 :1,2,3,4和和1,2,3,4,是相同的數(shù)列嗎?是相同的數(shù)列嗎?提
4、示提示:不是數(shù)列:不是數(shù)列1,2,3,4表示有窮數(shù)列,而表示有窮數(shù)列,而1,2,3,4,表表示無窮數(shù)列示無窮數(shù)列3 3、數(shù)列的通項公式、數(shù)列的通項公式如果數(shù)列如果數(shù)列an的第的第n項與項與_之間的關(guān)系可以用一個式子來之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的表示,那么這個公式叫做這個數(shù)列的(通項公式通項公式an=f(n)另外,數(shù)列還可以用列表法、圖象法、遞推公式法等表示另外,數(shù)列還可以用列表法、圖象法、遞推公式法等表示序號序號n1 1、數(shù)列概念的理解、數(shù)列概念的理解(1)有序性:如有序性:如1,2,3與與3,2,1是不同的數(shù)列是不同的數(shù)列(2)可重復(fù):如可重復(fù):如2,2,2是一
5、個數(shù)列是一個數(shù)列(3)an與與an是兩個不同的概念:是兩個不同的概念:an表示數(shù)列表示數(shù)列a1,a2,an,而,而an只表示數(shù)列只表示數(shù)列an的第的第n項項(4)數(shù)列與數(shù)集是兩個不同的概念,它們主要區(qū)別在于:集合數(shù)列與數(shù)集是兩個不同的概念,它們主要區(qū)別在于:集合中的元素具有無序性和互異性,數(shù)列中的項是有序的且可以中的元素具有無序性和互異性,數(shù)列中的項是有序的且可以相同,即如果組成兩個數(shù)列的數(shù)相同而排列次序不同,那么相同,即如果組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的數(shù)列,另一方面,同一個數(shù)在數(shù)列中可以重它們就是不同的數(shù)列,另一方面,同一個數(shù)在數(shù)列中可以重復(fù)出現(xiàn)復(fù)出現(xiàn)名師點(diǎn)睛名師點(diǎn)
6、睛2 2、數(shù)列的通項公式、數(shù)列的通項公式(1)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式數(shù)列都有通項公式(2)有通項公式的數(shù)列,其通項公式在形式上不一定是唯一有通項公式的數(shù)列,其通項公式在形式上不一定是唯一的如數(shù)列的如數(shù)列1,1,1,1,它可以寫成,它可以寫成an(1)n,也可,也可以寫成以寫成an(1)n2等等(3)熟記一些基本數(shù)列的通項公式,如:熟記一些基本數(shù)列的通項公式,如:數(shù)列數(shù)列1,1,1,1,的通項公式是的通項公式是an(1)n;數(shù)列數(shù)列1,2,3,4,的通項公式是的通項公式是ann;數(shù)列數(shù)列1,3,5,7,
7、的通項公式是的通項公式是an2n1;數(shù)列數(shù)列2,4,6,8,的通項公式是的通項公式是an2n;數(shù)列數(shù)列1,2,4,8,的通項公式是的通項公式是an2n1;數(shù)列數(shù)列1,4,9,16,的通項公式是的通項公式是ann2.題型一題型一數(shù)列的有關(guān)概念數(shù)列的有關(guān)概念【例【例1】下列說法哪些是正確的?哪些是錯誤的?并說明理由下列說法哪些是正確的?哪些是錯誤的?并說明理由(1)0,1,2,3,4是有窮數(shù)列;是有窮數(shù)列;(2)所有自然數(shù)能構(gòu)成數(shù)列;所有自然數(shù)能構(gòu)成數(shù)列;(3)3,1,1,x,5,7,y,11是一個項數(shù)為是一個項數(shù)為8的數(shù)列;的數(shù)列;(4)數(shù)列數(shù)列1,3,5,7,2n1,的通項公式是的通項公式是a
8、n2n1.思路探索思路探索 緊扣數(shù)列的有關(guān)概念完成判斷緊扣數(shù)列的有關(guān)概念完成判斷 已知下列數(shù)列:已知下列數(shù)列:(1)2 000,2 004,2 008,2 012;其中,有窮數(shù)列是其中,有窮數(shù)列是_,無窮數(shù)列是,無窮數(shù)列是_,遞增數(shù),遞增數(shù)列是列是_,遞減數(shù)列是,遞減數(shù)列是_,擺動數(shù)列是,擺動數(shù)列是_,周期數(shù)列是周期數(shù)列是_(將合理的序號填在橫線上將合理的序號填在橫線上)【變式變式1】 (1)(2)(3)(4)(5)(1)(2)(3)(4)(5)(5) 【例【例2】根據(jù)數(shù)列的前幾項,寫出下列各數(shù)列的一個通項公式根據(jù)數(shù)列的前幾項,寫出下列各數(shù)列的一個通項公式題型二題型二根據(jù)數(shù)列的前幾項寫出通項公
9、式根據(jù)數(shù)列的前幾項寫出通項公式1 1 1(1).1,2 4 8(2) 1,1, 1,1 1,11925(3),2,8,2221 15 1329(4),2 48 1632 已知數(shù)列已知數(shù)列an的通項公式為的通項公式為an3n228n.(1)寫出數(shù)列的第寫出數(shù)列的第4項和第項和第6項;項;(2)問問49和和68是該數(shù)列的項嗎?若是,是第幾項?若不是,是該數(shù)列的項嗎?若是,是第幾項?若不是,請說明理由請說明理由 (1)根據(jù)根據(jù)an3n228n,a434228464,a636228660.(6分分)(2)令令3n228n49,即,即3n228n490,題型三題型三數(shù)列通項公式的應(yīng)用數(shù)列通項公式的應(yīng)用【例例3】【變式變式3】思考思考1、在、在abc中,角中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學(xué)高級職稱正高《普通外科學(xué)》(題庫)模擬試卷一
- 皮膚美白技術(shù)的發(fā)展與市場需求分析
- 2025年山東青島市政空間開發(fā)集團(tuán)有限責(zé)任公司招聘筆試參考題庫附帶答案詳解
- 慈善救助個人申請書
- 氣候變化對農(nóng)業(yè)生態(tài)系統(tǒng)的挑戰(zhàn)及應(yīng)對策略研究
- 未來電影產(chǎn)業(yè)的商業(yè)模式與市場趨勢研究
- 湖南省長沙市2024年七年級《語文》上冊期末試卷與答案(A卷)
- 成都市武侯區(qū)2022年七年級《語文》下冊期末試卷與參考答案
- 部編版:2022年七年級《語文B卷》上冊期中試卷與參考答案
- 退籃球隊申請書
- GB/T 11376-2020金屬及其他無機(jī)覆蓋層金屬的磷化膜
- 讖緯神學(xué)與白虎通義
- 中醫(yī)藥膳學(xué)全套課件
- 分析化學(xué)(第6版)全套課件完整版電子教案最新板
- 海上日出配套說課PPT
- 新青島版(五年制)五年級下冊小學(xué)數(shù)學(xué)全冊導(dǎo)學(xué)案(學(xué)前預(yù)習(xí)單)
- (完整word版)重點(diǎn)監(jiān)管的危險化學(xué)品名錄(完整版)
- 詳情頁測試文檔20220802
- 專利糾紛行政調(diào)解辦案指南
- 經(jīng)編工藝基本樣布的分析
- 一文看懂全部變電站電氣主接線方式
評論
0/150
提交評論