排列組合問(wèn)題解法總結(jié)93235_第1頁(yè)
排列組合問(wèn)題解法總結(jié)93235_第2頁(yè)
排列組合問(wèn)題解法總結(jié)93235_第3頁(yè)
排列組合問(wèn)題解法總結(jié)93235_第4頁(yè)
排列組合問(wèn)題解法總結(jié)93235_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、-作者xxxx-日期xxxx排列組合問(wèn)題解法總結(jié)93235【精品文檔】二十種排列組合問(wèn)題的解法 排列組合問(wèn)題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問(wèn)題,首先要認(rèn)真審題,弄清楚是排列問(wèn)題、組合問(wèn)題還是排列與組合綜合問(wèn)題;其次要抓住問(wèn)題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉?lái)處理教學(xué)目標(biāo)1.進(jìn)一步理解和應(yīng)用分步計(jì)數(shù)原理和分類計(jì)數(shù)原理2.掌握解決排列組合問(wèn)題的常用策略;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題提高學(xué)生解決問(wèn)題分析問(wèn)題的能力 3.學(xué)會(huì)應(yīng)用數(shù)學(xué)思想和方法解決排列組合問(wèn)題.復(fù)習(xí)鞏固1.分類計(jì)數(shù)原理(加法原理)完成一件事,有類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方

2、法,在第類辦法中有種不同的方法,那么完成這件事共有:種不同的方法2.分步計(jì)數(shù)原理(乘法原理)完成一件事,需要分成個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法,做第步有種不同的方法,那么完成這件事共有:種不同的方法 分類計(jì)數(shù)原理方法相互獨(dú)立,任何一種方法都可以獨(dú)立地完成這件事分步計(jì)數(shù)原理各步相互依存,每步中的方法完成事件的一個(gè)階段,不能完成整個(gè)事件解決排列組合綜合性問(wèn)題的一般過(guò)程如下:2.怎樣做才能完成所要做的事,即采取分步還是分類,或是分步與分類同時(shí)進(jìn)行,確定分多少步及多少類3.確定每一步或每一類是排列問(wèn)題(有序)還是組合(無(wú)序)問(wèn)題,元素總數(shù)是多少及取出多少個(gè)元素.4.解決排列組合

3、綜合性問(wèn)題,往往類與步交叉,因此必須掌握一些常用的解題策略例1.由0,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置. 先排末位,從1,3,5三個(gè)數(shù)中任選一個(gè)共有排法; 然后排首位,從,和剩余的兩個(gè)奇數(shù)中任選一個(gè)共有種排法; 最后排中間三個(gè)數(shù),從剩余四個(gè)數(shù)中任選個(gè)的排列數(shù)共有種排法; 由分步計(jì)數(shù)原理得練習(xí)題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問(wèn)有多少不同的種法?解:先種兩種不同的葵花在不受限限制的四個(gè)花盒中共有不同種法,再其它葵花有不同種法,所以共有不同種法種不同的種

4、法例2. 7人站成一排 ,其中甲乙相鄰且丙丁相鄰, 共有多少種不同的排法.解:可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)復(fù)合元素,再與其它元素進(jìn)行排列,同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排由分步計(jì)數(shù)原理可得共有種不同的排法練習(xí)題:某人射擊8槍,命中4槍,4槍命中恰好有3槍連在一起的情形的不同種數(shù)為 20 解:命中的三槍捆綁成一槍,與命中的另一槍插入未命中的四槍的空位,共有種不的情形例3.一晚會(huì)的節(jié)目有4個(gè)舞蹈,2個(gè)相聲,3個(gè)獨(dú)唱,舞蹈節(jié)目不能連續(xù)出場(chǎng),則節(jié)目的出場(chǎng)順序有多少種?解:分兩步進(jìn)行第一步排2個(gè)相聲和3個(gè)獨(dú)唱共有種,第二步將4舞蹈插入第一步排好的6個(gè)元素中間包含首尾兩個(gè)空位

5、共有種不同的方法,由分步計(jì)數(shù)原理,節(jié)目的不同順序共有練習(xí)題:節(jié)目單中,且兩個(gè)新節(jié)目不相鄰,那么不同插法的種數(shù)為 30例4.7人排隊(duì),其中甲乙丙3人順序一定共有多少不同的排法解:(倍縮法)對(duì)于某幾個(gè)元素順序一定的排列問(wèn)題,可先把這幾個(gè)元素與其他元素一起進(jìn)行排列,然后用總排列數(shù)除以這幾個(gè)元素之間的全排列數(shù),則共有不同排法種數(shù)是: (空位法)設(shè)想有7把椅子讓除甲乙丙以外的四人就坐共有種方法,其余的三個(gè)位置甲乙丙共有 1種坐法,則共有種方法(七個(gè)空位坐了四人,剩下個(gè)空位按一定順序坐下甲,乙,丙) 思考:可以先讓甲乙丙就坐嗎? (插入法)先排甲乙丙三個(gè)人,共有1種排法,再把其余4四人依次插入共有方法(先

6、選三個(gè)座位坐下甲,乙,丙共有種選法,余下四個(gè)空位排其它四人共有種排法,所以共有種方法)練習(xí)題:10人身高各不相等,排成前后排,每排5人,要求從左至右身高逐漸增加,共有多少排法?例5.把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí),共有多少種不同的分法解:完成此事共分六步:把第一名實(shí)習(xí)生分配到車間有 7 種分法.把第二名實(shí)習(xí)生分配到車間也有7種分依此類推,由分步計(jì)數(shù)原理共有種不同的排法練習(xí)題:1 某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為 42 2. 某8層大樓一樓電梯上來(lái)8名乘客人,他們到各自的一層下電梯,下電梯的方法六.環(huán)排問(wèn)題直

7、排策略如果在圓周上個(gè)不同的位置編上不同的號(hào)碼,那么從個(gè)不同的元素的中選取個(gè)不同的元素排在圓周上不同的位置,這種排列和直線排列是相同的;如果從個(gè)不同的元素的中選取個(gè)不同的元素排列在圓周上,位置沒(méi)有編號(hào),元素間的相對(duì)位置沒(méi)有改變,不計(jì)順逆方向,這種排列和直線排列是不同的,這就是環(huán)形排列的問(wèn)題一個(gè)個(gè)元素的環(huán)形排列,相當(dāng)于一個(gè)有個(gè)頂點(diǎn)的多邊形,沿相鄰兩個(gè)點(diǎn)的弧線剪斷,再拉直就是形成一個(gè)直線排列,即一個(gè)個(gè)元素的環(huán)形排列對(duì)應(yīng)著個(gè)直線排列,設(shè)從個(gè)元素中取出個(gè)元素組成的環(huán)形排列數(shù)為個(gè),則對(duì)應(yīng)的直線排列數(shù)為個(gè),又因?yàn)閺膫€(gè)元素中取出個(gè)元素的排成一排的排列數(shù)為個(gè),所以,所以即從個(gè)元素中取出個(gè)元素組成的環(huán)形排列數(shù)為個(gè)

8、元素的環(huán)形排列數(shù)為例6. 8人圍桌而坐,共有多少種坐法?解:圍桌而坐與坐成一排的不同點(diǎn)在于,坐成圓形沒(méi)有首尾之分,所以固定一人并從此位置把圓形展成直線其余7人共有種排法,即 種練習(xí)題:6顆顏色不同的鉆石,可穿成幾種鉆石圈 120例7.8人排成前后兩排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后兩排,相當(dāng)于8人坐8把椅子,可以把椅子排成一排.先排前個(gè)位置,個(gè)特殊元素有種排法,再排后4個(gè)位置上的特殊元素丙有種,其余的5人在5個(gè)位置上任意排列有種,則共有種排法(排好后,按前個(gè)為前排,后人為后排分成兩排即可)練習(xí)題:有兩排座位,前排11個(gè)座位,后排12個(gè)座位,現(xiàn)安排2人就座規(guī)定前排

9、中間的3個(gè)座位不能坐,并且這2人不左右相鄰,那么不同排法的種數(shù)是 346 解:由于甲乙二人不能相鄰,所以前排第1,4,8,11四個(gè)位置和后排第,位置是排甲乙中的一個(gè)時(shí),與它相鄰的位置只能排除一個(gè),而其它位置要排除個(gè),所以共有排列例8.有5個(gè)不同的小球,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有多少不同的裝法.解:第一步從5個(gè)球中選出2個(gè)組成復(fù)合元共有種方法.再把4個(gè)元素(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有種方法,根據(jù)分步計(jì)數(shù)原理裝球的方法共有練習(xí)題:一個(gè)班有6名戰(zhàn)士,其中正副班長(zhǎng)各1人現(xiàn)從中選4人完成四種不同的任務(wù),每人完成一種任務(wù),且正副班長(zhǎng)有且只有1人參加,則不同的選法有 192 種例

10、9.用1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù)其中恰有兩個(gè)偶數(shù)在1,在兩個(gè)奇數(shù)之間,這樣的五位數(shù)有多少個(gè)?(注:兩個(gè)偶數(shù),在兩個(gè)奇數(shù),之間,這是題意,說(shuō)這個(gè)結(jié)構(gòu)不能被打破,故只能排這個(gè)結(jié)構(gòu)的外圍,也就是說(shuō)要把這個(gè)結(jié)構(gòu)看成一個(gè)整體與進(jìn)行排列)解:把,當(dāng)作一個(gè)小集團(tuán)與排隊(duì)共有種排法,再排小集團(tuán)內(nèi)部共有種排法,由分步計(jì)數(shù)原理共有種排法.練習(xí)題:.計(jì)劃展出10幅不同的畫,其中1幅水彩畫,幅油畫,幅國(guó)畫, 排成一行陳列,要求同一品種的必須連在一起,并且水彩畫不在兩端,那么共有陳列方式的種數(shù)為2. 5男生和女生站成一排照像,男生相鄰,女生也相鄰的排法有種例10.有10個(gè)運(yùn)動(dòng)員名額,分給7個(gè)班,每班至少一

11、個(gè),有多少種分配方案? 解:因?yàn)?0個(gè)名額沒(méi)有差別,把它們排成一排相鄰名額之間形成個(gè)空隙在個(gè)空檔中選個(gè)位置插個(gè)隔板,可把名額分成份,對(duì)應(yīng)地分給個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有種分法注:這和投信問(wèn)題是不同的,投信問(wèn)題的關(guān)鍵是信不同,郵筒也不同,而這里的問(wèn)題是郵筒不同,但信是相同的即班級(jí)不同,但名額都是一樣的練習(xí)題:10個(gè)相同的球裝5個(gè)盒中,每盒至少一有多少裝法? 2.求這個(gè)方程組的自然數(shù)解的組數(shù) 例11.從0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的 取法有多少種?解:這問(wèn)題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法這十個(gè)數(shù)字中有5

12、個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有,只含有1個(gè)偶數(shù)的取法有,和為偶數(shù)的取法共有再淘汰和小于10的偶數(shù)共9種,符合條件的取法共有練習(xí)題:我們班里有43位同學(xué),從中任抽5人,正、副班長(zhǎng)、團(tuán)支部書記至少有一人在內(nèi)的抽法有多少種?例12. 6本不同的書平均分成3堆,每堆2本共有多少分法? 解: 分三步取書得種方法,但這里出現(xiàn)重復(fù)計(jì)數(shù)的現(xiàn)象,不妨記6本書為ABCDEF,若第一步取AB,第二步取CD,第三步取EF該分法記為(AB,CD,EF),則中還有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有種取法 ,而這些分法僅是(AB,

13、CD,EF)一種分法,故共有種分法平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要一定要除以(為均分的組數(shù))避免重復(fù)計(jì)數(shù)。練習(xí)題:1 將13個(gè)球隊(duì)分成3組,一組5個(gè)隊(duì),其它兩組4個(gè)隊(duì), 有多少分法?()名學(xué)生分成3組,其中一組4人, 另兩組3人但正副班長(zhǎng)不能分在同一組,有多少種不同的分組方法 (1540)3.某校高二年級(jí)共有六個(gè)班級(jí),現(xiàn)從外地轉(zhuǎn) 入4名學(xué)生,要安排到該年級(jí)的兩個(gè)班級(jí)且每班安排2名,則不同的安排方案種數(shù)為_()十三. 合理分類與分步策略例13.在一次演唱會(huì)上共10名演員,其中8人能能唱歌,5人會(huì)跳舞,現(xiàn)要演出一個(gè)2人唱歌2人伴舞的節(jié)目,有多少選派方法解:10演員中有5

14、人只會(huì)唱歌,2人只會(huì)跳舞3人為全能演員選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研究 只會(huì)唱的5人中沒(méi)有人選上唱歌人員共有種,只會(huì)唱的5人中只有1人選上唱歌人員種,只會(huì)唱的5人中只有2人選上唱歌人員有種,由分類計(jì)數(shù)原理共有 種解含有約束條件的排列組合問(wèn)題,可按元素的性質(zhì)進(jìn)行分類,按事件發(fā)生的連續(xù)過(guò)程分步,做到標(biāo)準(zhǔn)明確。分步層次清楚,不重不漏,分類標(biāo)準(zhǔn)一旦確定要貫穿于解題過(guò)程的始終。本題還有如下分類標(biāo)準(zhǔn):以3個(gè)全能演員是否選上唱歌人員為標(biāo)準(zhǔn);以3個(gè)全能演員是否選上跳舞人員為標(biāo)準(zhǔn);以只會(huì)跳舞的2人是否選上跳舞人員為標(biāo)準(zhǔn);都可經(jīng)得到正確結(jié)果練習(xí)題:1.從4名男生和3名女生中選出4人參加某個(gè)座談會(huì),若這4人中必須既有男生

15、又有女生,則不同的選法共有34 2. 3成人2小孩乘船游玩,1號(hào)船最多乘3人, 2號(hào)船最多乘2人,3號(hào)船只能乘1人,他們?nèi)芜x2只船或3只船,但小孩不能單獨(dú)乘一只船, 這3人共有多少乘船方法. (27) 例14. 馬路上有編號(hào)為1,2,3,4,5,6,7,8,9的九只路燈,現(xiàn)要關(guān)掉其中的3盞,但不能關(guān)掉相鄰的2盞或3盞,也不能關(guān)掉兩端的2盞,求滿足條件的關(guān)燈方法有多少種?解:把此問(wèn)題當(dāng)作一個(gè)排隊(duì)模型在6盞亮燈的5個(gè)空隙中插入3個(gè)不亮的燈有 種一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊(duì)模型,裝盒模型等,可使問(wèn)題直觀解決練習(xí)題:某排共有10個(gè)座位,若4人就坐,每人左右兩

16、邊都有空位,那么不同的坐法有多少種?(120)例15.設(shè)有編號(hào)1,2,3,4,5的五個(gè)球和編號(hào)1,2,3,4,5的五個(gè)盒子,現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi),要求每個(gè)盒子放一個(gè)球,并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,有多少投法解:從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有種還剩下3球3盒序號(hào)不能對(duì)應(yīng),利用實(shí)際操作法,如果剩下3,4,5號(hào)球, 3,4,5號(hào)盒,3號(hào)球只能裝入4號(hào)或5號(hào)盒,共兩種裝法,當(dāng)3號(hào)球裝4號(hào)盒時(shí),則4,5號(hào)球只有1種裝法,同理3號(hào)球裝5號(hào)盒時(shí),4,5號(hào)球有也只有1種裝法,由分步計(jì)數(shù)原理有種 .練習(xí)題:1.同一寢室4人,每人寫一張賀年卡集中起來(lái),然后每人各拿一張別人的賀年卡,則四張賀年卡不

17、同的分配方式有多少種? (9)2.給圖中區(qū)域涂色,要求相鄰區(qū) 域不同色,現(xiàn)有4種可選顏色,則不同的著色方法有 72種十六. 分解與合成策略例16. 30030能被多少個(gè)不同的偶數(shù)整除分析:先把30030分解成質(zhì)因數(shù)的乘積形式30030=235 7 1113依題意可知偶因數(shù)必先取2,再?gòu)钠溆?個(gè)因數(shù)中任取若干個(gè)組成乘積,所有的偶因數(shù)為:練習(xí):正方體的8個(gè)頂點(diǎn)可連成多少對(duì)異面直線.(是連成異面直線,所以包括對(duì)角線)解:我們先從8個(gè)頂點(diǎn)中任取4個(gè)頂點(diǎn)構(gòu)成四體共有體共,每個(gè)四面體有3對(duì)異面直線,正方體中的8個(gè)頂點(diǎn)可連成對(duì)異面直線分解與合成策略是排列組合問(wèn)題的一種最基本的解題策略,把一個(gè)復(fù)雜問(wèn)題分解成幾

18、個(gè)小問(wèn)題逐一解決,然后依據(jù)問(wèn)題分解后的結(jié)構(gòu),用分類計(jì)數(shù)原理和分步計(jì)數(shù)原理將問(wèn)題合成,從而得到問(wèn)題的答案 ,每個(gè)比較復(fù)雜的問(wèn)題都要用到這種解題策略十七.化歸策略例17. 25人排成55方陣,現(xiàn)從中選3人,要求3人不在同一行也不在同一列,不同的選法有多少種?解:將這個(gè)問(wèn)題退化成9人排成33方隊(duì)中選3人的方法有種再?gòu)?5方陣選出35方隊(duì)中選取3行3列有選法所以從55方陣選不在同一行也不在同一列的3人有選法從方陣中任取3個(gè)人時(shí),因這三人不在同一行同一列,所以每行必有一人,據(jù)此,從每行任了練習(xí)題:某城市的街區(qū)由12個(gè)全等的矩形區(qū)組成,其中實(shí)線表示馬路,從A走到B的最短路徑有多少種?()例18由0,1,2,3,4,5六個(gè)數(shù)字可以組成多少個(gè)沒(méi)有重復(fù)的比324105大的數(shù)?解:數(shù)字排序問(wèn)題可用查字典法

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論