教育統(tǒng)計(jì)學(xué)考試復(fù)習(xí)資料_第1頁(yè)
教育統(tǒng)計(jì)學(xué)考試復(fù)習(xí)資料_第2頁(yè)
教育統(tǒng)計(jì)學(xué)考試復(fù)習(xí)資料_第3頁(yè)
教育統(tǒng)計(jì)學(xué)考試復(fù)習(xí)資料_第4頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余1頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、.第一章:1、何謂心理與教育統(tǒng)計(jì)學(xué)?學(xué)習(xí)它有何意義?教育統(tǒng)計(jì)學(xué)是專門(mén)研究如何運(yùn)用統(tǒng)計(jì)學(xué)原理和方法,搜集、整理、分析教育科學(xué)研究中獲得的隨機(jī)性數(shù)據(jù)資料,并根據(jù)這些數(shù)據(jù)資料所傳遞的信息,進(jìn)行科學(xué)推論找出教育活動(dòng)規(guī)律的一門(mén)科學(xué)。具體講,就是在教育研究中,通過(guò)調(diào)查、實(shí)驗(yàn)、測(cè)量等手段有意獲取一些數(shù)據(jù),并將得到的數(shù)據(jù)按統(tǒng)計(jì)學(xué)原理和步驟加以整理、計(jì)算、繪制圖表、分析、判斷、推理,最后得出結(jié)論的一種研究方法。意義:(1)統(tǒng)計(jì)學(xué)為科學(xué)研究提供了一種科學(xué)方法。(2)教育統(tǒng)計(jì)學(xué)是教育科學(xué)研究定量分析的重要重要工具。(3)廣大教育工作者學(xué)習(xí)教育統(tǒng)計(jì)學(xué)既可以順利地閱讀國(guó)內(nèi)外先進(jìn)的研究成果,又可以提高工作的科學(xué)性和效率,

2、同時(shí)也為學(xué)習(xí)教育測(cè)量打下基礎(chǔ)。2、教育科學(xué)研究數(shù)據(jù)的特點(diǎn) (1)教育科學(xué)研究數(shù)據(jù)與結(jié)果多用數(shù)字形式呈現(xiàn);(2)教育科學(xué)研究數(shù)據(jù)具有隨機(jī)性和變異性;(3)教育科學(xué)研究數(shù)據(jù)具有規(guī)律性;(4)教育科學(xué)研究的目的是通過(guò)部分?jǐn)?shù)據(jù)來(lái)推測(cè)總體特征??傊诮逃茖W(xué)實(shí)驗(yàn)或調(diào)查中,所獲得的數(shù)據(jù)都具有變異性與規(guī)律性的特點(diǎn)。3、思考題:選用統(tǒng)計(jì)方法有哪幾個(gè)步驟? 要分析一下實(shí)驗(yàn)設(shè)計(jì)是否合理,即所獲得的數(shù)據(jù)是否適合用統(tǒng)計(jì)方法去處理,正確的數(shù)量化是應(yīng)用統(tǒng)計(jì)方法的起步,如果對(duì)數(shù)量化的過(guò)程及其意義沒(méi)有了解,將一些不著邊際的數(shù)據(jù)加以統(tǒng)計(jì)處理是毫無(wú)意義的。 要分析實(shí)驗(yàn)數(shù)據(jù)的類型。不同數(shù)據(jù)類型所使用的統(tǒng)計(jì)方法有很大差別,了解實(shí)驗(yàn)

3、數(shù)據(jù)的類型和水平,對(duì)選用恰當(dāng)?shù)慕y(tǒng)計(jì)方法至關(guān)重要。 要分析數(shù)據(jù)的分布規(guī)律,如總體方差的情況,確定其是否滿足所選用的統(tǒng)計(jì)方法的前提條件。4、教育統(tǒng)計(jì)學(xué)的分類 (1)依研究的問(wèn)題實(shí)質(zhì)來(lái)劃分,教育統(tǒng)計(jì)學(xué)的研究?jī)?nèi)容可劃分為描述一件事物的性質(zhì)、比較兩件事物之間的差異、分析影響事物變化的因素、一件事物兩種不同屬性之間的相互關(guān)系、取樣方法等等。(2)依統(tǒng)計(jì)方法的功能進(jìn)行分類,教育統(tǒng)計(jì)學(xué)的研究?jī)?nèi)容可分為描述統(tǒng)計(jì)、推論統(tǒng)計(jì)和實(shí)驗(yàn)設(shè)計(jì)。5、描述統(tǒng)計(jì):主要研究如何整理科學(xué)實(shí)驗(yàn)或調(diào)查得來(lái)的大量數(shù)據(jù),描述一組數(shù)據(jù)的全貌,表達(dá)一件事物的性質(zhì)。 具體內(nèi)容包括:(1)數(shù)據(jù)如何分組,如何使用各種統(tǒng)計(jì)圖表描述一組數(shù)據(jù)的分布情況;(

4、2)怎樣計(jì)算一組數(shù)據(jù)的特征值,簡(jiǎn)縮數(shù)據(jù),進(jìn)一步描述一組數(shù)據(jù)的全貌;(3)表示一事物兩種或兩種以上屬性間相互關(guān)系的描述及各種相關(guān)系數(shù)的計(jì)算及應(yīng)用條件,描述數(shù)據(jù)分布特征的峰度及偏度系數(shù)計(jì)算方法等。 6、推論統(tǒng)計(jì):主要研究如何通過(guò)局部數(shù)據(jù)所提供的信息,推論總體(或稱全局)的情形。 具體內(nèi)容包括:(1)如何對(duì)假設(shè)進(jìn)行檢驗(yàn),即各種各樣的假設(shè)檢驗(yàn),包括大樣本檢驗(yàn)方法(z檢驗(yàn)),小樣本檢驗(yàn)方法(t檢驗(yàn)),各種計(jì)數(shù)資料的假設(shè)檢驗(yàn)的方法(百分?jǐn)?shù)檢驗(yàn)、2檢驗(yàn)等),變異數(shù)分析的方法(F檢驗(yàn)),回歸分析方法等等。(2)總體參數(shù)的估計(jì)方法。(3)各種非參數(shù)的統(tǒng)計(jì)方法等。7、思考題:描述統(tǒng)計(jì)、推論統(tǒng)計(jì)和實(shí)驗(yàn)設(shè)計(jì)這三部分統(tǒng)

5、計(jì)內(nèi)容有何關(guān)系?教育統(tǒng)計(jì)學(xué)的三個(gè)組成部分的內(nèi)容不是截然分開(kāi)的,而是相互聯(lián)系的。描述統(tǒng)計(jì)是推論統(tǒng)計(jì)的基礎(chǔ),推論統(tǒng)計(jì)離不開(kāi)描述統(tǒng)計(jì)計(jì)算所獲得的特征值;描述統(tǒng)計(jì)只是對(duì)數(shù)據(jù)進(jìn)行一般的分析歸納,如果不進(jìn)一步應(yīng)用推論統(tǒng)計(jì)作進(jìn)一步的分析,描述統(tǒng)計(jì)的結(jié)果就不會(huì)產(chǎn)生更大的價(jià)值和意義,達(dá)不到統(tǒng)計(jì)分析的最終目的要求。同樣,只有良好的實(shí)驗(yàn)設(shè)計(jì)才能使所獲得的數(shù)據(jù)具有意義,進(jìn)一步的統(tǒng)計(jì)處理才能說(shuō)明問(wèn)題。當(dāng)然一個(gè)好的實(shí)驗(yàn)設(shè)計(jì),也必須符合基本的統(tǒng)計(jì)方法的要求,否則,再好的設(shè)計(jì),如果事先沒(méi)有確定適當(dāng)?shù)慕y(tǒng)計(jì)方法處理,在處理研究結(jié)果時(shí)可能會(huì)遇到許多麻煩問(wèn)題。8、教育統(tǒng)計(jì)與心理統(tǒng)計(jì)的異同 相同之處:二者的研究對(duì)象都是人,教育現(xiàn)象在很

6、多情況下要通過(guò)人的心理現(xiàn)象去觀察和分析,統(tǒng)計(jì)方法基本相同。不同之處: 在統(tǒng)計(jì)方法上:在教育方面的研究中,大樣本的統(tǒng)計(jì)方法應(yīng)用較多;而在心理學(xué)上小樣本的方法較多。 在實(shí)驗(yàn)設(shè)計(jì)的水平上:教育實(shí)驗(yàn)中控制因素較難,采用自然實(shí)驗(yàn)、準(zhǔn)實(shí)驗(yàn)設(shè)計(jì)方式較多,對(duì)統(tǒng)計(jì)結(jié)果的解釋需要特別謹(jǐn)慎;而心理學(xué)實(shí)驗(yàn)則在實(shí)驗(yàn)室條件下進(jìn)行較多,對(duì)各種實(shí)驗(yàn)變量的控制相對(duì)容易,統(tǒng)計(jì)處理結(jié)果的解釋也較易進(jìn)行。9、數(shù)據(jù)的類型(一)從數(shù)據(jù)的觀測(cè)方法和來(lái)源劃分,研究數(shù)據(jù)可區(qū)分為計(jì)數(shù)數(shù)據(jù)和測(cè)量數(shù)據(jù)兩大類。 計(jì)數(shù)數(shù)據(jù)是指計(jì)算個(gè)數(shù)的數(shù)據(jù),一般屬性的調(diào)查獲得的是此類數(shù)據(jù),它具有獨(dú)立的分類單位,一般都取整數(shù)的形式。測(cè)量數(shù)據(jù)是借助于一定的測(cè)量工具或一定的

7、測(cè)量標(biāo)準(zhǔn)而獲得的數(shù)據(jù)。(二)根據(jù)數(shù)據(jù)反映的測(cè)量水平,可把數(shù)據(jù)區(qū)分為稱名數(shù)據(jù)、順序數(shù)據(jù)、等距數(shù)據(jù)和比率數(shù)據(jù)四種類型。 稱名數(shù)據(jù)只說(shuō)明某一事物與其它事物在屬性上的不同或類別上的差異,它具有獨(dú)立的分類單位,其數(shù)值一般都取整數(shù)形式,只計(jì)算個(gè)數(shù),并不說(shuō)明事物之間差異的大小。 順序數(shù)據(jù)是指既無(wú)相等單位,也無(wú)絕對(duì)零點(diǎn)的數(shù)據(jù),是按事物某種屬性的多少或大小,按次序?qū)⒏鱾€(gè)事物加以排列后獲得的數(shù)據(jù)資料。 等距數(shù)據(jù)是具有相等單位,但無(wú)絕對(duì)零點(diǎn)的數(shù)據(jù)。 比率數(shù)據(jù)既表明量的大小,也有相等單位,同時(shí)還具有絕對(duì)零點(diǎn)的數(shù)據(jù)。(三)按照數(shù)據(jù)是否具有連續(xù)性,把數(shù)據(jù)劃分為離散數(shù)據(jù)和連續(xù)數(shù)據(jù)。 離散數(shù)據(jù)一般取整數(shù),在兩個(gè)單位之間不能再

8、劃分細(xì)小單位。 連續(xù)數(shù)據(jù)的單位可以劃得很細(xì)微,細(xì)微的程度能達(dá)到只可想象而不能看見(jiàn)的程度。10、思考題:統(tǒng)計(jì)量與參數(shù)之間有何區(qū)別和聯(lián)系?區(qū)別: 參數(shù)是從整個(gè)總體中計(jì)算得到的量數(shù),通常是通過(guò)相應(yīng)樣本特征值來(lái)預(yù)測(cè)得到;統(tǒng)計(jì)量是從一個(gè)樣本中計(jì)算出來(lái)的一些量數(shù),它可以描述一組數(shù)據(jù)的情況。 參數(shù)代表總體的特性,它是一個(gè)常數(shù);統(tǒng)計(jì)量代表樣本的特性,它是一個(gè)變量,隨著樣本的變化而變化。 參數(shù)與統(tǒng)計(jì)量之間最明顯的區(qū)別是參數(shù)常用希臘字母表示,而統(tǒng)計(jì)量常用英文字母表示。聯(lián)系:從數(shù)值計(jì)算上講,當(dāng)總體大小已知并與實(shí)驗(yàn)觀測(cè)的總次數(shù)相同時(shí),統(tǒng)計(jì)量與參數(shù)是同一統(tǒng)計(jì)指標(biāo);當(dāng)總體為無(wú)限時(shí),統(tǒng)計(jì)量與總體參數(shù)不同,但統(tǒng)計(jì)量可在某種程

9、度上作為總體參數(shù)的估計(jì)值。通過(guò)樣本統(tǒng)計(jì)量,對(duì)總體參數(shù)做出預(yù)測(cè)和估計(jì)。第二章:1、統(tǒng)計(jì)分組應(yīng)注意的事項(xiàng) (1)統(tǒng)計(jì)分組前的準(zhǔn)備 。將數(shù)據(jù)進(jìn)行分組前,先要對(duì)觀測(cè)數(shù)據(jù)做進(jìn)一步的核對(duì)和校驗(yàn)。校核數(shù)據(jù)的目的是為了盡可能地消去記錄誤差,以便后續(xù)的統(tǒng)計(jì)分析建立在一個(gè)堅(jiān)實(shí)的基礎(chǔ)上。(2)統(tǒng)計(jì)分組時(shí)應(yīng)注意的問(wèn)題。 分組要以被研究對(duì)象的本質(zhì)特性為基礎(chǔ); 分類標(biāo)志要明確,要能包括所有的數(shù)據(jù)。2、分組次數(shù)分布表的意義與缺點(diǎn) 意義:編制分組次數(shù)分布表,可將一堆雜亂無(wú)序的數(shù)據(jù)排列成序。從表中可以發(fā)現(xiàn)各個(gè)數(shù)據(jù)的出現(xiàn)次數(shù)是多少,其分布的狀態(tài)如何。缺點(diǎn):分組次數(shù)分布表也有缺點(diǎn),僅從這張表看,原始數(shù)據(jù)不見(jiàn)了,只見(jiàn)到各分組區(qū)間及各

10、組的次數(shù)。根據(jù)這樣的統(tǒng)計(jì)表提供的數(shù)據(jù)資料計(jì)算得到的平均值,會(huì)與用原始數(shù)據(jù)計(jì)算的值有一定的出入。3、思考題:直方圖、條形圖、圓形圖、線性圖、散點(diǎn)圖等這些常用的統(tǒng)計(jì)圖,根據(jù)它們表現(xiàn)的作用和內(nèi)容,把它們可分為哪幾類? 根據(jù)它們表現(xiàn)的作用和內(nèi)容,把它們可分為五類。第一種是表現(xiàn)分布的圖,比如直方圖。第二種是表現(xiàn)內(nèi)容的圖,如條形圖和圓形圖。第三種是表現(xiàn)變化的圖,這種圖形的代表是線性圖。第四種是表現(xiàn)比較的圖,這幾種圖形都能采用。第五種是表現(xiàn)相關(guān)的圖,如散點(diǎn)圖。4、條形圖和直方圖的區(qū)別。(1)描述的數(shù)據(jù)類型不同。(2)表示數(shù)據(jù)多少的方式不同。(3)坐標(biāo)軸上的標(biāo)尺分點(diǎn)意義不同。(4)圖形直觀形狀不同。第三章:1

11、、算術(shù)平均數(shù)的優(yōu)缺點(diǎn)算術(shù)平均數(shù)具備一個(gè)良好的集中量數(shù)所應(yīng)具備的一些條件: 反應(yīng)靈敏; 嚴(yán)密確定; 簡(jiǎn)明易懂; 計(jì)算簡(jiǎn)單; 適合代數(shù)運(yùn)算; 較少受抽樣變動(dòng)的影響。除此之外,算術(shù)平均數(shù)還有以下一些特殊的優(yōu)點(diǎn): 只知一組觀察值的總和及總頻數(shù)就可以求出算術(shù)平均數(shù); 用加權(quán)法可以求出幾個(gè)平均數(shù)的總平均數(shù); 用樣本數(shù)據(jù)推斷總體集中量數(shù)時(shí),算術(shù)平均數(shù)最接近總體集中量數(shù)的真值,它是總體平均數(shù)的最好估計(jì)值; 在計(jì)算方差、標(biāo)準(zhǔn)差、相關(guān)系數(shù)以及進(jìn)行統(tǒng)計(jì)推斷時(shí),都要用到它。缺點(diǎn): 易受極端數(shù)據(jù)的影響; 若出現(xiàn)模糊不清的數(shù)據(jù)時(shí),無(wú)法計(jì)算平均數(shù)。2、算術(shù)平均數(shù)的意義、適用條件及應(yīng)用原則意義:算術(shù)平均數(shù)是應(yīng)用最普遍的集中量

12、數(shù),它是“真值”漸近、最佳的估計(jì)值。適用的條件:一組數(shù)據(jù)是比較準(zhǔn)確,可靠又同質(zhì),而且需要每一個(gè)數(shù)據(jù)都加入計(jì)算,同時(shí)還要作進(jìn)一步代數(shù)運(yùn)算時(shí),這時(shí)就需要用算術(shù)平均數(shù)表示其集中趨勢(shì)。原則: 同質(zhì)性原則; 平均數(shù)與個(gè)體數(shù)值相結(jié)合的原則; 平均數(shù)與標(biāo)準(zhǔn)差、方差相結(jié)合的原則。3、中數(shù)適用的情況(1)當(dāng)一組觀測(cè)結(jié)果中出現(xiàn)兩極端數(shù)目時(shí);(2)當(dāng)次數(shù)分布的兩端數(shù)據(jù)或個(gè)別數(shù)據(jù)不清楚時(shí);(3)當(dāng)需要快速估計(jì)一組數(shù)據(jù)的代表值時(shí)。4、眾數(shù)適用的情況(1)當(dāng)需要快速而粗略地尋求一組數(shù)據(jù)的代表值時(shí);(2)當(dāng)一組數(shù)據(jù)出現(xiàn)不同質(zhì)的情況時(shí);(3)當(dāng)次數(shù)分布中有兩極端的數(shù)目時(shí);4)當(dāng)粗略估計(jì)次數(shù)分布的形態(tài)時(shí)。第四章:1、思考題:為

13、什么要引入差異量數(shù)來(lái)描述一組數(shù)據(jù)的特征? 在教育研究中,要全面描述數(shù)據(jù)的特征,不但要了解數(shù)據(jù)的典型情況,而且還要了解特殊情況。這些特殊性常表現(xiàn)為數(shù)據(jù)的變異性。因此,只有集中量數(shù)不可能真實(shí)地反映它們的分布情況。為了全面反映數(shù)據(jù)的總體情況,除了使用集中量數(shù)外,還需要引入差異量數(shù)。2、思考題:為什么說(shuō)標(biāo)準(zhǔn)差是重要而完善的差異量? (1)標(biāo)準(zhǔn)差具有簡(jiǎn)單明了,反映靈敏,嚴(yán)密確定,容易計(jì)算,適合代數(shù)運(yùn)算,受抽樣變動(dòng)的影響較少等優(yōu)點(diǎn)。(2)標(biāo)準(zhǔn)差在避免兩極端數(shù)值影響方面大大超過(guò)全距、百分位差和四分位差;在避免絕對(duì)值方面,優(yōu)于平均差;在考慮單位方面,優(yōu)于方差。3、差異系數(shù)的應(yīng)用 (1)同一團(tuán)體不同觀測(cè)值離散程

14、度的比較(即不同單位資料差異程度的比較);(2)對(duì)于水平相差較大,但進(jìn)行的是一種觀測(cè)的各種團(tuán)體,進(jìn)行觀測(cè)值離散程度的比較(即單位相同而平均數(shù)相差較大的兩組資料差異程度的比較)。應(yīng)用差異系數(shù)比較相對(duì)差異大小時(shí),應(yīng)注意以下幾點(diǎn): 測(cè)量的數(shù)據(jù)要保證具有等距尺度; 觀測(cè)工具應(yīng)具備絕對(duì)零; 差異系數(shù)只能用于一般的相對(duì)差異量的描述,至今尚無(wú)有效的假設(shè)檢驗(yàn)方法。第五章:1、思考題:如何理解相關(guān)系數(shù)?相關(guān)系數(shù)是兩列變量間相關(guān)程度的數(shù)字表現(xiàn)形式。對(duì)于這一概念,我們可以從以下幾個(gè)方面來(lái)理解: (1)相關(guān)系數(shù)的取值在-1.00和+1.00之間;(2)相關(guān)系數(shù)的絕對(duì)值表示兩個(gè)變量之間的相關(guān)強(qiáng)度,絕對(duì)值越接近1表示相關(guān)

15、越強(qiáng),越接近0表示相關(guān)越弱;(3)相關(guān)系數(shù)的正負(fù)號(hào)表示相關(guān)的方向,相關(guān)系數(shù)為正的表示正相關(guān),相關(guān)系數(shù)為負(fù)的表示負(fù)相關(guān);(4)相關(guān)系數(shù)可以比較大小,但不能進(jìn)行加減乘除運(yùn)算。 2、如何選擇合適的相關(guān)系數(shù)?選擇計(jì)算相關(guān)系數(shù)的方法主要取決于要處理的數(shù)據(jù)的性質(zhì)類別以及某一相關(guān)系數(shù)需要滿足的假設(shè)條件。具體來(lái)說(shuō),為了選擇一個(gè)合適的相關(guān)系數(shù)進(jìn)行相關(guān)分析,要分以下幾個(gè)步驟考慮:(1)考慮每種測(cè)量所產(chǎn)生的數(shù)據(jù)屬于什么類別,測(cè)查被試的哪種心理屬性,是分類,還是排序,還是評(píng)定等級(jí)?是否給出確定的分?jǐn)?shù)?(2)要對(duì)第一種測(cè)量數(shù)據(jù)和第二種測(cè)量數(shù)據(jù)的類別做出判斷。是二分?jǐn)?shù)據(jù)、等級(jí)數(shù)據(jù),還是等距數(shù)據(jù)?(3)確定采用哪一種相關(guān)系

16、數(shù)。3、積差相關(guān)的適用資料(1)要求成對(duì)的數(shù)據(jù),即若干個(gè)體中每個(gè)個(gè)體都有兩種不同的觀測(cè)值。(2)計(jì)算相關(guān)的成對(duì)的數(shù)據(jù)的數(shù)目不宜少于30對(duì)。(3)兩列變量各自總體的分布都是正態(tài)分布,至少兩個(gè)變量服從的分布是接近正態(tài)的單峰分布。(4)兩個(gè)相關(guān)的變量是連續(xù)變量,也即兩列數(shù)據(jù)都是測(cè)量數(shù)據(jù)。(5)兩列變量之間的關(guān)系應(yīng)是直線性的第六章:1、測(cè)驗(yàn)分?jǐn)?shù)的正態(tài)化步驟如下:(1)將原始分?jǐn)?shù)整理成次數(shù)分布表;(2)計(jì)算各分組上限以下的累加次數(shù)cf ;(3)計(jì)算每組中點(diǎn)的累加次數(shù),即前一組上限以下的累加次數(shù)加上該組次數(shù)的一半;(4)各組中點(diǎn)以下的累加次數(shù)除以總數(shù)求累積比率;(5)將各組中點(diǎn)以下的累積比率視為正態(tài)分布的

17、概率,查正態(tài)表,將概率轉(zhuǎn)化為Z 分?jǐn)?shù);(6)將正態(tài)化的Z 值利用公式( T=10Z+50 )加以直線轉(zhuǎn)化。2、概率分布的類型 (1)按隨機(jī)變量是否具有連續(xù)性來(lái)分類,可分為離散分布與連續(xù)分布。(2)按分布函數(shù)的來(lái)源來(lái)分類,可分為經(jīng)驗(yàn)分布(是指根據(jù)觀察或?qū)嶒?yàn)所獲得的數(shù)據(jù)而編制的次數(shù)分布或相對(duì)頻數(shù)分布)與理論分布(一是指隨機(jī)變量概率分布的函數(shù)數(shù)學(xué)模型,二是指按某種數(shù)學(xué)模型計(jì)算出的總體的次數(shù)分布)。(3)按概率分布所描述的數(shù)據(jù)特征來(lái)分類,可分為基本隨機(jī)變量分布與抽樣分布。第七章:1、總體參數(shù)估計(jì)(簡(jiǎn)稱參數(shù)估計(jì))是指根據(jù)樣本統(tǒng)計(jì)量對(duì)相應(yīng)總體參數(shù)所作的估計(jì)??傮w參數(shù)估計(jì)可分為點(diǎn)估計(jì)和區(qū)間估計(jì)。2、點(diǎn)估計(jì)是

18、指用樣本統(tǒng)計(jì)量的值來(lái)估計(jì)相應(yīng)總體參數(shù)的值。點(diǎn)估計(jì)的優(yōu)點(diǎn)在于它能夠提供總體參數(shù)的估計(jì)值;缺點(diǎn)在于它總是以誤差的存在為前提,但又不能提供正確估計(jì)的概率。良好估計(jì)量的標(biāo)準(zhǔn):無(wú)偏性、有效性、一致性、充分性區(qū)間估計(jì)是指以樣本統(tǒng)計(jì)量的樣本分布為理論依據(jù),按一定的概率要求,由樣本統(tǒng)計(jì)量的值估計(jì)總體參數(shù)值的所在范圍。優(yōu)點(diǎn)是不僅給出一個(gè)估計(jì)的范圍,是總體參數(shù)包含在這個(gè)范圍之內(nèi),而且還能給出估計(jì)精度并說(shuō)明估計(jì)結(jié)果的有把握的程度。缺點(diǎn)是無(wú)法具體指出總體參數(shù)等于什么。第八章1、思考題:假設(shè)檢驗(yàn)這種反證法與一般的數(shù)學(xué)反證法有什么不同?(1)數(shù)學(xué)反證法最終推翻假設(shè)的依據(jù)一定是出現(xiàn)了百分之百的謬誤,因此推翻假設(shè)的決策無(wú)論是

19、決策邏輯還是從決策內(nèi)容看都是百分之百正確的。而假設(shè)檢驗(yàn)的反證法最終推翻零假設(shè)的依據(jù)是一個(gè)小概率事件,從決策邏輯角度看是百分之百正確的,但其決策的內(nèi)容卻是有可能出錯(cuò)的。(2)數(shù)學(xué)中使用反證法,其最終結(jié)果一定是推翻原假設(shè),而假設(shè)檢驗(yàn)這種反證法的最終結(jié)果卻有可能無(wú)充分理由推翻零假設(shè)。2、在統(tǒng)計(jì)學(xué)中,通過(guò)樣本統(tǒng)計(jì)量得出的差異做出一般性結(jié)論,判斷總體參數(shù)之間是否存在差異,這種推論過(guò)程稱作假設(shè)檢驗(yàn)。第九章:1、思考題:為什么不能用t檢驗(yàn)對(duì)多個(gè)平均數(shù)的差異進(jìn)行比較?這是因?yàn)樵诩僭O(shè)檢驗(yàn)中作統(tǒng)計(jì)決策冒有犯錯(cuò)誤的風(fēng)險(xiǎn)。在對(duì)兩個(gè)總體平均數(shù)作檢驗(yàn)時(shí),我們犯拒真錯(cuò)誤的概率為,結(jié)論正確的概率為1-。而在對(duì)多個(gè)總體平均數(shù)作

20、檢驗(yàn)時(shí),采用兩兩比較的方法,比較的次數(shù)會(huì)隨總體的增多而迅速增多,假設(shè)共要比N次,那么連續(xù)次結(jié)論都正確的概率就是(1-)N ,結(jié)論出錯(cuò)的概率為1-(1-)N ,這個(gè)值會(huì)隨著N的增大而迅速增大,這就不符合我們希望在一次檢驗(yàn)中犯拒真錯(cuò)誤的概率為的要求了。所以,在對(duì)多個(gè)平均數(shù)作顯著性檢驗(yàn)時(shí),不能用t檢驗(yàn)對(duì)多個(gè)平均數(shù)的差異進(jìn)行比較。第十一章:1、非參數(shù)檢驗(yàn)的特點(diǎn) (1)非參數(shù)檢驗(yàn)一般不需要嚴(yán)格的前提條件;(2)非參數(shù)檢驗(yàn)特別適用于順序資料(等級(jí)變量);(3)非參數(shù)檢驗(yàn)很適合于小樣本,且方法簡(jiǎn)單;(4)非參數(shù)檢驗(yàn)最大的不足是未能充分利用資料的全部信息;(5)非參數(shù)檢驗(yàn)?zāi)壳斑€不能處理“交互作用”。2、適用資

21、料 秩和檢驗(yàn)法與參數(shù)檢驗(yàn)中獨(dú)立樣本的t 檢驗(yàn)相對(duì)應(yīng)。當(dāng)“總體正態(tài)”這一前提不成立,不能使用t檢驗(yàn)時(shí)以秩和檢驗(yàn)法代替t 檢驗(yàn)。當(dāng)兩個(gè)樣本都為順序變量時(shí),也需使用秩和檢驗(yàn)法來(lái)進(jìn)行差異檢驗(yàn)。中數(shù)檢驗(yàn)法與秩和檢驗(yàn)法的適用條件基本相同,而且在非參數(shù)檢驗(yàn)法中的地位也同秩和檢驗(yàn)法相當(dāng),對(duì)應(yīng)著參數(shù)檢驗(yàn)中兩獨(dú)立樣本平均數(shù)之差的t 檢驗(yàn)。所謂符號(hào)檢驗(yàn)法是以正負(fù)號(hào)作為資料的一種非參數(shù)方法,它適用于相關(guān)樣本的差異檢驗(yàn),與參數(shù)檢驗(yàn)中相關(guān)樣本差異顯著性t 檢驗(yàn)相對(duì)應(yīng)。符號(hào)檢驗(yàn)法也是將中數(shù)作為集中趨勢(shì)的度量,主要用來(lái)檢驗(yàn)與某些差值的中數(shù)有關(guān)的零假設(shè)。符號(hào)等級(jí)檢驗(yàn)法又稱添號(hào)秩和檢驗(yàn)法,其適條件與符號(hào)檢驗(yàn)法相同,也適合配對(duì)比較

22、,但它的精確度比符號(hào)法高??送呤蠁蜗蚍讲罘治鲆卜QH 檢驗(yàn),作為非參數(shù)方法,它與參數(shù)方法中的完全隨機(jī)資料方差分析相對(duì)應(yīng)。弗里德曼雙向等級(jí)方差分析可解決隨機(jī)區(qū)組實(shí)驗(yàn)設(shè)計(jì)的一些非參數(shù)檢驗(yàn)問(wèn)題。適合于配對(duì)組(隨機(jī)區(qū)組)設(shè)計(jì)的多個(gè)樣本進(jìn)行比較。第十二章:1、回歸分析與相關(guān)分析的區(qū)別和聯(lián)系是什么?聯(lián)系:它們通常都是基于兩正態(tài)連續(xù)變量的假設(shè),都是處理兩變量間相互關(guān)系的統(tǒng)計(jì)方法,通常兩種方法不同時(shí)出現(xiàn)在文章中。區(qū)別:作為相互關(guān)系分析的方法,相關(guān)分析師通過(guò)提供一個(gè)相關(guān)系數(shù)來(lái)考察兩變量間的聯(lián)系程度,二回歸分析則是重在建立兩變量間的函數(shù)關(guān)系式,因此通??梢韵瓤疾煜嚓P(guān)系數(shù)的顯著型,如果顯著則可以進(jìn)一步考慮建立變量間的回歸方程。此外,相關(guān)分析和回歸分析又各有一些具體方法用于處理不同的情況,如相關(guān)分析還包括等級(jí)相關(guān)、質(zhì)量相關(guān)和品質(zhì)相關(guān),回歸分析還包括非線性回歸等。2、線性回歸的基本假設(shè):(1)線性關(guān)系假設(shè)(2)正態(tài)性假設(shè)(3)獨(dú)立性假設(shè)(4)誤差等分散性假設(shè)3、回歸分析與相關(guān)分析的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論