![中考數學專練總復習 三元一次方程組(提高)知識講解_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-7/6/f04d0cfd-d76c-4918-94ef-9d27d98ee3f9/f04d0cfd-d76c-4918-94ef-9d27d98ee3f91.gif)
![中考數學專練總復習 三元一次方程組(提高)知識講解_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-7/6/f04d0cfd-d76c-4918-94ef-9d27d98ee3f9/f04d0cfd-d76c-4918-94ef-9d27d98ee3f92.gif)
![中考數學專練總復習 三元一次方程組(提高)知識講解_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-7/6/f04d0cfd-d76c-4918-94ef-9d27d98ee3f9/f04d0cfd-d76c-4918-94ef-9d27d98ee3f93.gif)
![中考數學專練總復習 三元一次方程組(提高)知識講解_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-7/6/f04d0cfd-d76c-4918-94ef-9d27d98ee3f9/f04d0cfd-d76c-4918-94ef-9d27d98ee3f94.gif)
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、三元一次方程組(提高)知識講解【學習目標】1理解三元一次方程(或組)的含義;2會解簡單的三元一次方程組;3. 會列三元一次方程組解決有關實際問題.【要點梳理】要點一、三元一次方程及三元一次方程組的概念1.三元一次方程的定義:含有三個相同的未知數,并且含有未知數的項的次數都是1的整式方程如x+y-z1,2a-3b+4c5等都是三元一次方程要點詮釋: (1)三元一次方程的條件:是整式方程,含有三個未知數,含未知數的項的最高次數是1次(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不為零2三元一次方程組的定義:一般地,由幾個一次方程組成,并且含有三個未知數的方程組,叫做三元一
2、次方程組. 要點詮釋:(1) 三個方程中不一定每一個方程中都含有三個未知數,只要三個方程共含有三個未知量即可(2)在實際問題中含有三個未知數,當這三個未知數同時滿足三個相等關系時,可以建立三元一次方程組求解要點二、三元一次方程組的解法 解三元一次方程組的一般步驟(1)利用代入法或加減法,把方程組中一個方程與另兩個方程分別組成兩組,消去兩組中的同一個未知數,得到關于另外兩個未知數的二元一次方程組;(2)解這個二元一次方程組,求出兩個未知數的值;(3)將求得的兩個未知數的值代入原方程組中的一個系數比較簡單的方程,得到一個一元一次方程;(4)解這個一元一次方程,求出最后一個未知數的值;(5)將求得的
3、三個未知數的值用“”合寫在一起要點詮釋:(1)解三元一次方程組的基本思路是:通過“代入”或“加減”消元,把“三元”化為“二元”使解三元一次方程組轉化為解二元一次方程組,進而轉化為解一元一次方程其思想方法是:(2)有些特殊的方程組可用特殊的消元法,解題時要根據各方程特點尋求其較簡單的解法要點三、三元一次方程組的應用列三元一次方程組解應用題的一般步驟:1弄清題意和題目中的數量關系,用字母(如x,y,z)表示題目中的兩個(或三個)未知數; 2找出能夠表達應用題全部含義的相等關系; 3根據這些相等關系列出需要的代數式,從而列出方程并組成方程組; 4解這個方程組,求出未知數的值; 5寫出答案(包括單位名
4、稱)要點詮釋:(1)解實際應用題必須寫“答”,而且在寫答案前要根據應用題的實際意義,檢查求得的結果是否合理,不符合題意的應該舍去(2)“設”、“答”兩步,都要寫清單位名稱,應注意單位是否統一(3)一般來說,設幾個未知數,就應列出幾個方程并組成方程組【典型例題】類型一、三元一次方程及三元一次方程組的概念1. 下列方程組不是三元一次方程組的是() a b c d 【思路點撥】根據三元一次方程組的定義來求解,對a、b、c、d四個選項進行一一驗證【答案】b【解析】解:由題意知,含有三個相同的未知數,每個方程中含未知數的項的次數都是1次,并且一共有三個方程,叫做三元一次方程組a、滿足三元一次方程組的定義
5、,故a選項錯誤;b、x2-4=0,未知量x的次數為2次,不是三元一次方程,故b選項正確;c、滿足三元一次方程組的定義,故c選項錯誤;d、滿足三元一次方程組的定義,故d選項錯誤;故選b【總結升華】三元一次方程組中的方程不一定都是三元一次方程,并且有時需對方程化簡后再根據三元一次方程組的定義進行判斷類型二、三元一次方程組的解法2.解三元一次方程組【思路點撥】特點:,是比例形式,策略:引入參數k【答案與解析】解法一:由,設,則x3k+1,y4k+2,代入,得,解之,得從而x7,y10故原方程組的解為,解法二:由得,則y5k,z3k代入、得:,解得,故原方程組的解為【總結升華】若某一方程是比例形式,則
6、先引入參數,后消元舉一反三:【變式】解方程組 【答案】解:由,得3x2y,即, 由,得5y4z,即,把、代入,得解得y12把代入,得x8,把代入,得z15所以原方程組的解為【高清課堂:三元一次方程組 409145 例3】3.已知方程組的解使得代數式x-2y+3z的值等于-10,求a的值【思路點撥】由題意可知,此方程組中的a是已知數,x、y、z是未知數,先解方程組,求出x,y,z(含有a的代數式),然后把求得的x、y、z代入等式x-2y+3z-10,可得關于a的一元一次方程,解這個方程,即可求得a的值【答案與解析】解法一: -,得z-x2a +,得2z6a,z3a把z3a分別代入和,得y2a,x
7、a 把xa,y2a,z3a代入x-2y+3z10得a-22a+33a-10解得解法二:+,得2(x+y+z)12a即x+y+z=6a -,得z3a,-,得xa,-,得y2a ,把xa,y2a,z3a代入x-2y+3z10得a-22a+33a-10解得【總結升華】當方程組中三個方程的未知數的系數都相同時,可以運用此題解法2中的技巧解這類方程組【高清課堂:三元一次方程組409145 例4】舉一反三:【變式】若 ,則x:y:z .【答案】 類型三、三元一次方程組的應用4. (涼山)甲、乙、丙三塊地,草長得一樣密,一樣快,甲地公頃可供12頭牛吃4周;乙地10公頃可供21頭牛吃9周,求丙地24公頃可供幾
8、頭牛吃18周?【思路點撥】本題草地上原有一些草,其數量不知,草地上的草還在不停地生長,但生長的速度不知道,因此解題時應把原有的草量、草的生長速度及每頭牛每周的食草量用字母表示,設成輔助未知數,再根據題意便可列出方程組【答案與解析】解:設每公頃草地原有牧草akg,每周每公頃草地生長草bkg,每頭牛每周吃草ckg,丙地24公頃地可供x頭牛吃18周根據題意得由得代入,得x36答:丙地24公頃可供36頭牛吃18周【總結升華】用三元一次方程組解答實際問題的方法與用二元一次方程組解答實際問題的方法類似,根據題目給出的條件尋找相等關系是利用方程解應用題的重要一環(huán)舉一反三:【變式】某車間每天可以生產甲種零件600個或乙種零件300個或丙種零件500個,這三種零件各一個可以配成一套,現要在63天的生產中,使生產的三種零件全部配套
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年表面改性材料合作協議書
- 2025年智能食品營養(yǎng)秤合作協議書
- 八年級英語下冊 Unit 6 單元綜合測試卷(人教版 2025年春)
- SPM93-MODBUS串行通信協議-V1.0
- 2025年產權委托交易協議標準范文(2篇)
- 2025年二年級數學教學工作總結第一學期模版(二篇)
- 2025年個人無息的借款合同(三篇)
- 2025年個人房屋租房合同協議(三篇)
- 2025年個人車抵押借款合同常用版(2篇)
- 2025年五年級丑小鴨閱讀心得樣本(2篇)
- 綜合客運樞紐換乘區(qū)域設施設備配置要求JTT1066-2016
- 中國急性缺血性卒中診治指南(2023)解讀
- 2024PowerTitan系列運維指導儲能系統運維指導
- 沸石轉輪知識講解
- 固定資產盤點報告醫(yī)院版
- 中國內部審計準則及指南
- 銀行個人業(yè)務培訓課件
- 2024年ISTQB認證筆試歷年真題薈萃含答案
- tpu顆粒生產工藝
- 《體檢中心培訓》課件
- 腫瘤患者全程管理
評論
0/150
提交評論