![三角函數(shù)公式推導(dǎo)及證明_第1頁](http://file1.renrendoc.com/fileroot_temp2/2021-2/12/dd07b7bf-f247-4dbf-acd0-cf463fa62025/dd07b7bf-f247-4dbf-acd0-cf463fa620251.gif)
![三角函數(shù)公式推導(dǎo)及證明_第2頁](http://file1.renrendoc.com/fileroot_temp2/2021-2/12/dd07b7bf-f247-4dbf-acd0-cf463fa62025/dd07b7bf-f247-4dbf-acd0-cf463fa620252.gif)
![三角函數(shù)公式推導(dǎo)及證明_第3頁](http://file1.renrendoc.com/fileroot_temp2/2021-2/12/dd07b7bf-f247-4dbf-acd0-cf463fa62025/dd07b7bf-f247-4dbf-acd0-cf463fa620253.gif)
![三角函數(shù)公式推導(dǎo)及證明_第4頁](http://file1.renrendoc.com/fileroot_temp2/2021-2/12/dd07b7bf-f247-4dbf-acd0-cf463fa62025/dd07b7bf-f247-4dbf-acd0-cf463fa620254.gif)
![三角函數(shù)公式推導(dǎo)及證明_第5頁](http://file1.renrendoc.com/fileroot_temp2/2021-2/12/dd07b7bf-f247-4dbf-acd0-cf463fa62025/dd07b7bf-f247-4dbf-acd0-cf463fa620255.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、 24小時咨詢熱線:4006 500 666三角函數(shù)公式推導(dǎo)及證明 推導(dǎo)公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R為外接圓半徑)由正弦定理有a/sinA=b/sinB=c/sinC=2R所以a=2R*sinAb=2R*sinBc=2R*sinC加起來a+b+c=2R*(sinA+sinB+sinC)帶入(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R對數(shù)的性質(zhì)及推導(dǎo)用表示乘方,用log(a)(b)表示以a為底,b的對數(shù)*表示乘號,/表示除號定義式:若an=b(
2、a0且a1)則n=log(a)(b)基本性質(zhì):1.a(log(a)(b)=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(Mn)=nlog(a)(M)推導(dǎo)1.這個就不用推了吧,直接由定義式可得(把定義式中的n=log(a)(b)帶入an=b)2.MN=M*N由基本性質(zhì)1(換掉M和N)alog(a)(MN)=alog(a)(M)*alog(a)(N)由指數(shù)的性質(zhì)alog(a)(MN)=alog(a)(M)+log(a)(N)又因為指數(shù)函數(shù)是單調(diào)函數(shù),所以log(a)(MN)=log(a)(M
3、)+log(a)(N)3.與2類似處理MN=M/N由基本性質(zhì)1(換掉M和N)alog(a)(M/N)=alog(a)(M)/alog(a)(N)由指數(shù)的性質(zhì)alog(a)(M/N)=alog(a)(M)-log(a)(N)又因為指數(shù)函數(shù)是單調(diào)函數(shù),所以log(a)(M/N)=log(a)(M)-log(a)(N)4.與2類似處理Mn=Mn由基本性質(zhì)1(換掉M)alog(a)(Mn)=alog(a)(M)n由指數(shù)的性質(zhì)alog(a)(Mn)=alog(a)(M)*n又因為指數(shù)函數(shù)是單調(diào)函數(shù),所以log(a)(Mn)=nlog(a)(M)其他性質(zhì):性質(zhì)一:換底公式log(a)(N)=log(b)(
4、N)/log(b)(a)推導(dǎo)如下N=alog(a)(N)a=blog(b)(a)綜合兩式可得N=blog(b)(a)log(a)(N)=blog(a)(N)*log(b)(a)又因為N=blog(b)(N)所以blog(b)(N)=blog(a)(N)*log(b)(a)所以log(b)(N)=log(a)(N)*log(b)(a)這步不明白或有疑問看上面的所以log(a)(N)=log(b)(N)/log(b)(a)性質(zhì)二:(不知道什么名字)log(an)(bm)=m/n*log(a)(b)推導(dǎo)如下由換底公式lnx是log(e)(x),e稱作自然對數(shù)的底log(an)(bm)=ln(an)/
5、ln(bn)由基本性質(zhì)4可得log(an)(bm)=n*ln(a)/m*ln(b)=(m/n)*ln(a)/ln(b)再由換底公式log(an)(bm)=m/n*log(a)(b)-(性質(zhì)及推導(dǎo)完)公式三:log(a)(b)=1/log(b)(a)證明如下:由換底公式log(a)(b)=log(b)(b)/log(b)(a)-取以b為底的對數(shù),log(b)(b)=1=1/log(b)(a)還可變形得:log(a)(b)*log(b)(a)=1 兩角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = co
6、sAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinACosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tanatan(+a)tan(-a)半角公式sin()=cos()=tan()=cot()= tan()=和差化積 sina+sinb=2sincossina-sinb=2cossincos
7、a+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=積化和差 sinasinb = -cos(a+b)-cos(a-b)cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b)cosasinb = sin(a+b)-sin(a-b)誘導(dǎo)公式 sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sinasin(+a) = cosacos(+a) = -sinasin(-a) = sinacos(-a) = -cosasin(+a) = -sinac
8、os(+a) = -cosatgA=tanA =萬能公式sina=cosa=tana=其它公式asina+bcosa=sin(a+c) 其中tanc=asin(a)-bcos(a) = cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)21-sin(a) = (sin-cos)2其他非重點三角函數(shù)csc(a) = sec(a) =雙曲函數(shù)sinh(a)=cosh(a)=tg h(a)=公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2k)= sin cos(2k)= cos tan(2k)= tan cot(2k)= cot 公式二: 設(shè)為任意角,+
9、的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系: sin()= -sin cos()= -cos tan()= tan cot()= cot 公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系: sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot 公式四: 利用公式二和公式三可以得到-與的三角函數(shù)值之間的關(guān)系: sin(-)= sin cos(-)= -cos tan(-)= -tan cot(-)= -cot 公式五: 利用公式-和公式三可以得到2-與的三角函數(shù)值之間的關(guān)系: sin(2-)= -sin cos(2-)= cos tan(2-)= -tan
10、cot(2-)= -cot 公式六: 及與的三角函數(shù)值之間的關(guān)系: sin(+)= cos cos(+)= -sin tan(+)= -cot cot(+)= -tan sin(-)= cos cos(-)= sin tan(-)= cot cot(-)= tan sin(+)= -cos cos(+)= sin tan(+)= -cot cot(+)= -tan sin(-)= -cos cos(-)= -sin tan(-)= cot cot(-)= tan (以上kZ) 這個物理常用公式我費了半天的勁才輸進(jìn)來,希望對大家有用 Asin(t+)+ Bsin(t+) =sin三角函數(shù)公式證明
11、(全部)公式表達(dá)式 乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-b+(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4a=0 注:方程有相等的兩實根 b2-4ac0 注:方程有一個實根 b2-4ac0 拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-
12、2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c*h 正棱錐側(cè)面積 S=1/2c*h 正棱臺側(cè)面積 S=1/2(c+c)h 圓臺側(cè)面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側(cè)棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h-三角函數(shù) 積化和差 和差化積公式
13、記不住就自己推,用兩角和差的正余弦: cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB 這兩式相加或相減,可以得到2組積化和差: 相加:cosAcosB=cos(A+B)+cos(A-B)/2 相減:sinAsinB=-cos(A+B)-cos(A-B)/2 sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinAcosB-sinBcosA 這兩式相加或相減,可以得到2組積化和差: 相加:sinAcosB=sin(A+B)+sin(A-B)/2 相減:sinBcosA=sin(A+B)-sin(A-B)/2 這樣
14、一共4組積化和差,然后倒過來就是和差化積了 不知道這樣你可以記住伐,實在記不住考試的時候也可以臨時推導(dǎo)一下正加正 正在前 正減正 余在前 余加余 都是余 余減余 沒有余還負(fù) 正余正加 余正正減 余余余加 正正余減還負(fù).3.三角形中的一些結(jié)論:(不要求記憶)(1)anA+tanB+tanC=tanAtanBtanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)sin(B/2)sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinAsinBsinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1.已知sin=m sin(+2), |m|1,求證tan(+)=(1+m)/(1-m)tan解:sin=m sin(+2) sin(a+-)=msin(a+) sin(a+)cos-cos(a+)sin=msin(a+)cos+mcos(a+)sin sin(a+)cos(1-m)=cos(a+)si
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產(chǎn)買賣合同
- 車輛駕駛承包合同范本
- 外貿(mào)代理合同仲裁條款
- 正規(guī)個人借款合同范本
- 無償借用車間合同范本
- 綠化綠植買賣合同范本
- 2025合法的工程合同樣式
- 專利申請委托合同書樣本
- 項目咨詢服務(wù)合同范本
- 貨物運輸公司的勞務(wù)合同
- 保安服務(wù)項目信息反饋溝通機(jī)制
- 全國各省(直轄市、自治區(qū))市(自治州、地區(qū))縣(縣級市)區(qū)名稱一覽表
- 《團(tuán)隊介紹模板》課件
- 常用中醫(yī)適宜技術(shù)目錄
- 沖壓模具價格估算方法
- 碳納米管應(yīng)用研究
- 運動技能學(xué)習(xí)與控制課件第十一章運動技能的練習(xí)
- 蟲洞書簡全套8本
- 2023年《反電信網(wǎng)絡(luò)詐騙法》專題普法宣傳
- 小學(xué)數(shù)學(xué)五年級上、下冊口算題大全
- 和平精英電競賽事
評論
0/150
提交評論