外文翻譯--機器學習的研究.doc_第1頁
外文翻譯--機器學習的研究.doc_第2頁
外文翻譯--機器學習的研究.doc_第3頁
外文翻譯--機器學習的研究.doc_第4頁
外文翻譯--機器學習的研究.doc_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1Machine-LearningResearchFourCurrentDirectionsThomasG.DietterichMachine-learningresearchhasbeenmakinggreatprogressinmanydirections.Thisarticlesummarizesfourofthesedirectionsanddiscussessomecurrentopenproblems.Thefourdirectionsare(1)theimprovementofclassificationaccuracybylearningensemblesofclassifiers,(2)methodsforscalingupsupervisedlearningalgorithms,(3)reinforcementlearning,and(4)thelearningofcomplexstochasticmodels.Thelastfiveyearshaveseenanexplosioninmachine-learningresearch.Thisexplosionhasmanycauses:First,separateresearchcommunitiesinsymbolicmachinelearning,computationlearningtheory,neuralnetworks,statistics,andpatternrecognitionhavediscoveredoneanotherandbeguntoworktogether.Second,machine-learningtechniquesarebeingappliedtonewkindsofproblem,includingknowledgediscoveryindatabases,languageprocessing,robotcontrol,andcombinatorialoptimization,aswellastomoretraditionalproblemssuchasspeechrecognition,facerecognition,handwritingrecognition,medicaldataanalysis,andgameplaying.Inthisarticle,Iselectedfourtopicswithinmachinelearningwheretherehasbeenalotofrecentactivity.ThepurposeofthearticleistodescribetheresultsintheseareastoabroaderAIaudienceandtosketchsomeoftheopenresearchproblems.Thetopicareasare(1)ensemblesofclassifiers,(2)methodsforscalingupsupervisedlearningalgorithms,(3)reinforcementlearning,and(4)thelearningofcomplexstochasticmodels.Thereadershouldbecautionedthatthisarticleisnotacomprehensivereviewofeachofthesetopics.Rather,mygoalistoprovidearepresentativesampleoftheresearchineachofthesefourareas.Ineachoftheareas,therearemanyotherpapersthatdescriberelevantwork.IapologizetothoseauthorswhoseworkIwasunabletoincludeinthearticle.EnsemblesofClassifiersThefirsttopicconcernsmethodsforimprovingaccuracyinsupervisedlearning.Ibeginbyintroducingsomenotation.Insupervisedlearning,alearningprogramisgiventrainingexamplesoftheform(x1,y1),(xm,ym)forsomeunknownfunctiony=f(x).Thexivaluesaretypicallyvectorsoftheformwhosecomponentsarediscreteorrealvalued,suchasheight,weight,color,andage.ThesearealsocalledthefeatureofXi,IusethenotationXijto.referto2thejthfeatureofXi.Insomesituations,Idroptheisubscriptwhenitisimpliedbythecontext.Theyvaluesaretypicallydrawnfromadiscretesetofclasses1,kinthecaseofclassificationorfromthereallineinthecaseofregression.Inthisarticle,Ifocusprimarilyonclassification.Thetrainingexamplesmightbecorruptedbysomerandomnoise.GivenasetSoftrainingexamples,alearningalgorithmoutputsaclassifier.Theclassifierisahypothesisaboutthetruefunctionf.Givennewxvalues,itpredictsthecorrespondingyvalues.Idenoteclassifiersbyh1,,hi.Anensembleofclassifierisasetofclassifierswhoseindividualdecisionsarecombinedinsomeway(typicallybyweightedorunweightedvoting)toclassifynewexamples.Oneofthemostactiveareasofresearchinsupervisedlearninghasbeenthestudyofmethodsforconstructinggoodensemblesofclassifiers.Themaindiscoveryisthatensemblesareoftenmuchmoreaccuratethantheindividualclassifiersthatmakethemup.Anensemblecanbeemoreaccuratethanitscomponentclassifiersonlyiftheindividualclassifiersdisagreewithoneanother(HansenandSalamon1990).Toseewhy,imaginethatwehaveanensembleofthreeclassifiers:h1,h2,h3,andconsideranewcasex.Ifthethreeclassifiersareidentical,thenwhenh1(x)iswrong,h2(x)andh3(x)arealsowrong.However,iftheerrorsmadebytheclassifiersareuncorrelated,thenwhenh1(x)iswrong,h2(x)andh3(x)mightbecorrect,sothatamajorityvotecorrectlyclassifiesx.Moreprecisely,iftheerrorratesofLhypotheseshiareallequaltopL/2andiftheerrorsareindependent,thentheprobabilitythatbinomialdistributionwheremorethanL/2hypothesesarewrong.Figure1showsthisareaforasimulatedensembleof21hypotheses,eachhavinganerrorrateof0.3.Theareaunderthecurvefor11ormorehypothesesbeingsimultaneouslywrongis0.026,whichismuchlessthantheerrorrateoftheindividualhypotheses.Ofcourse,iftheindividualhypothesesmakeuncorrelatederrorsatratesexceeding0.5,thentheerrorrateofthevotedensembleincreasesasaresultofthevoting.Hence,thekeytosuccessfulensemblemethodsistoconstructindividualclassifierswitherrorratesbelow0.5whoseerrorsareatleastsomewhatuncorrelated.MethodsforConstructingEnsemblesManymethodsforconstructingensembleshavebeendeveloped.Somemethodsaregeneral,andtheycanbeappliedtoanylearningalgorithm.Othermethodsarespecifictoparticularalgorithms.Ibeginbyreviewingthegeneraltechniques.SubsamplingtheTrainingExamplesThefirstmethodmanipulatesthetrainingexamplestogeneratemultiple3hypotheses.Thelearningalgorithmisrunseveraltimes,eachtimewithadifferentsubsetofthetrainingexamples.Thistechniqueworksespeciallywellforunstablelearningalgorithms-algorithmswhoseoutputclassifierundergoesmajorchangesinresponsetosmallchangesinthetrainingdata.Decisiontree,neuralnetwork,andrule-learningalgorithmsareallunstable.Linear-regression,nearest-neighbor,andlinear-thresholdalgorithmsaregenerallystable.Themoststraightforwardwayofmanipulatingthetrainingsetiscalledbagging.Oneachrun,baggingpresentsthelearningalgorithmwithatrainingsetthatconsistofasampleofmtrainingexamplesdrawnrandomlywithreplacementfromtheoriginaltrainingsetofmitems.Suchatrainingsetiscalledabootstrapreplicateoftheoriginaltrainingset,andthetechniqueiscalledbootstrapaggregation(Breiman1996a).Eachbootstrapreplicatecontains,ontheaverage,63.2percentoftheoriginalset,withseveraltrainingexamplesappearingmultipletimes.Anothertraining-setsamplingmethodistoconstructthetrainingsetsbyleavingoutdisjointsubsets.Then,10overlappingtrainingsetscanbedividedrandomlyinto10disjointsubsets.Then,10overlappingtrainingsetscanbeconstructedbydroppingoutadifferentisusedtoconstructtrainingsetsfortenfoldcross-validation;so,ensemblesconstructedinthiswayaresometimescalledcross-validatedcommittees(Parmanto,Munro,andDoyle1996).ThethirdmethodformanipulatingthetrainingsetisillustratedbytheADABOOSTalgorithm,developedbyFreundandSchapire(1996,1995)andshowninfigure2.Likebagging,ADABOOSTmanipulatesthetrainingexamplestogeneratemultiplehypotheses.ADABOOSTmaintainsaprobabilitydistributionpi(x)overthetrainingexamples.Ineachiterationi,itdrawsatrainingsetofsizembysamplingwithreplacementaccordingtotheprobabilitydistributionpi(x).Thelearningalgorithmisthenappliedtoproduceaclassifierhi.Theerrorrateiofthisclassifieronthetrainingexamples(weightedaccordingtopi(x)iscomputedandusedtoadjusttheprobabilitydistributiononthetrainingexamples.(Infigure2,notethattheprobabilitydistributionisobtainedbynormalizingasetofweightswi(i)overthetrainingexamples.)Theeffectofthechangeinweightsistoplacemoreweightonexamplesthatweremisclassifiedbyhiandlessweightonexamplesthatwerecorrectlyclassified.Insubsequentiterations,therefore,ADABOOSTconstructsprogressivelymoredifficultlearningproblems.Thefinalclassifier,hiisconstructsbyaweightedvoteoftheindividualclassifiers.Eachclassifierisweightedaccordingtoitsaccuracyforthedistributionpithatitwastrainedon.Inline4oftheADABOOSTalgorithm(figure2),thebaselearningalgorithmLearniscalledwiththeprobabilitydistributionpi.IfthelearningalgorithmLearncanusethisprobabilitydistributiondirectly,4thenthisproceduregenerallygivesbetterresults.Forexample,Quinlan(1996)developedaversionofthedecisiontree-learningprogramc4.5thatworkswithaweightedtrainingsample.Hisexperimentsshowedthatitworkedextremelywell.Onecanalsoimagineversionsofbackpropagationthatscaledthecomputedoutputerrorfortrainingexample(Xi,Yi)bytheweightpi(i).Errorsforimportanttrainingexampleswouldcauselargergradient-descentstepsthanerrorsforunimportant(low-weight)examples.However,ifthealgorithmcannotusetheprobabilitydistributionpidirectly,thenatrainingsamplecanbeconstructedbydrawingarandomsamplewithreplacementinproportiontotheprobabilitiespi.ThisproceduremakesADABOOSTmorestochastic,butexperimentshaveshownthatitisstilleffective.Figure3comparestheperformanceofc4.5toc4.5withADABOOST.M1(usingrandomsampling).Onepointisplottedforeachof27testdomainstakenfromtheIrvinerepositoryofmachine-learningdatabases(MerzandMurphy1996).Wecanseethatmostpointslieabovetheliney=x,whichindicatesthattheerrorrateofADABOOSTislessthantheerrorrateofc4.5.Figure4comparestheperformanceofbagging(withc4.5)toc4.5alone.Again,weseethatbaggingproducessizablereductionsintheerrorrateofc4.5formanyproblems.Finally,figure5comparesbaggingwithboosting(bothusingc4.5astheunderlyingalgorithm).Theresultsshowthatthetwotechniquesarecomparable,althoughboostingappearstostillhaveanadvantageoverbagging.Wecanseethatmostpointslieabovetheliney=x,whichindicatesthattheerrorrateofADABOOSTislessthantheerrorrateofc4.5.Figure4comparestheperformanceofbagging(withc4.5)toc4.5alone.Again,weseethatbaggingproducessizabler

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論