




已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
BridgeRatingUsingSystemReliabilityAssessment.II:ImprovementstoBridgeRatingPracticesNaiyuWang,M.ASCE1;BruceR.Ellingwood,Dist.M.ASCE2;andAbdul-HamidZureick,M.ASCE3Abstract:Thecurrentbridge-ratingprocessdescribedinAASHTOManualforBridgeEvaluation,FirstEditionpermitsratingstobedeterminedbyallowablestress,loadfactor,orloadandresistancefactormethods.Thesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostinglimitsforthesamebridge,asituationthathasseriousimplicationswithregardtopublicsafetyandtheeconomicwell-beingofcommunitiesthatmaybeaffectedbybridgepostingsorclosures.Thispaperisthesecondoftwopapersthatsummarizearesearchprogramtodevelopimprovementstothebridge-ratingprocessbyusingstructuralreliabilitymethods.Thefirstpaperprovidedbackgroundontheresearchprogramandsummarizedacoordinatedprogramofloadtestingandanalysistosupportthereliabilityassessmentleadingtotherecommendedimprovements.Thissecondpaperpresentsthereliabilitybasisfortherecommendedloadrating,developsmethodsthatcloselycoupletheratingprocesstotheresultsofinsituinspectionandevaluation,andrecommendsspecificimprovementstocurrentbridge-ratingmethodsinaformatthatisconsistentwiththeloadandresistancefactorrating(LRFR)optionintheAASHTOManualforBridgeEvalu-ation.DOI:10.1061/(ASCE)BE.1943-5592.0000171.2011AmericanSocietyofCivilEngineers.CEDatabasesubjectheadings:Concretebridges;Reinforcedconcrete;Prestressedconcrete;Loadfactors;Reliability;Steel;Ratings.Authorkeywords:Bridges(rating);Concrete(reinforced);Concrete(prestressed);Conditionassessment;Loads(forces);Reliability;Steel;structuralengineering.IntroductionTheAASHTOManualforBridgeEvaluation(MBE),FirstEdition(AASHTO2008)allowsbridgeratingstobedeterminedthroughthetraditionalallowablestressrating(ASR)orloadfactorrating(LFR)methodsorbythemorerecentloadandresistancefactorrating(LRFR)method,whichisconsistentwiththeAASHTOLRFDBridgeDesignSpecifications(2007).Thesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostedlimitsforthesamebridge(NCHRP2001;Wangetal.2009),asituationthatcannotbejustifiedfromaprofessionalengineeringviewpointandhasimplicationsforthesafetyandeconomicwell-beingofthoseaffectedbybridgepostingsorclosures.Toaddressthisissue,theGeorgiaInstituteofTechnologyhasconductedamultiyearresearchprogramaimedatmakingimprovementstotheprocessbywhichtheconditionofexistingbridgestructuresinGeorgiaareassessed.Theendproductofthisresearchprogramissetofrecommendedguidelinesfortheevaluationofexistingbridges(Ellingwoodetal.2009).Theseguidelinesareestablishedbyaco-ordinatedprogramofloadtestingandadvancedfinite-elementmodeling,whichhavebeenintegratedwithinastructuralreliabilityframeworktodeterminepracticalbridge-ratingmethodsthatareconsistentwiththoseusedtodeveloptheAASHTOLRFDBridgeDesignSpecifications(AASHTO2007).Itisbelievedthatbridgeconstructionandratingpracticesaresimilarenoughinothernon-seismicareastomaketheinferences,conclusions,andrecommen-dationsvalidforlargeregionsinthecentralandeasternUnitedStates(CEUS).TherecentimplementationofLRFDanditscompanionratingmethod,LRFR,bothofwhichhavebeensupportedbystructuralreliabilitymethods,enablebridgedesignandconditionassessmenttobeplacedonamorerationalbasis.Notwithstandingthesead-vances,improvedtechniquesforevaluatingthebridgeinitsinsituconditionwouldminimizethelikelihoodofunnecessaryposting.Forexample,materialstrengthsinsitumaybevastlydifferentfromthestandardizedornominalvaluesassumedindesignandcurrentratingpracticesattributabletostrengthgainofconcreteononehandanddeteriorationattributabletoaggressiveattackfromphysi-calorchemicalmechanismsontheother.Satisfactoryperformanceofawell-maintainedbridgeoveraperiodofyearsofservicepro-videsadditionalinformationnotavailableatthedesignstagethatmightbetakenintoaccountinmakingdecisionsregardingpostingorupgrading.Investigatingbridgesystemreliabilityratherthansolelyrelyingoncomponent-basedratingmethodsmayalsobeofsignificantbenefit.Properconsiderationofthesefactorsislikelytocontributetoamorerealisticcapacityratingofexistingbridges.ThispaperisthesecondoftwocompanionpapersthatprovidethetechnicalbasesforproposedimprovementstothecurrentLRFRpractice.Thefirstpaper(Wangetal.2011)summarizedthecurrentbridge-ratingprocessandpracticesintheUnitedStates,andpresentedtheresultsofacoordinatedbridgetestingandanalysisprogramconductedtosupportrevisionstothecurrentratingpro-cedures.ThispaperdescribesthereliabilityanalysisframeworkthatprovidesthebasisforrecommendedimprovementstotheMBEandrecommendsspecificimprovementstotheMBEthataddresstheprecedingfactors.1SeniorStructuralEngineer,Simpson,Gumpertz,andHeger,Inc.,41SeyonSt.,Waltham,MA02453;formerly,GraduateResearchAssistant,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology.2Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA30332-0355(correspondingauthor).E-mail:3Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA30332-0355.Note.ThismanuscriptwassubmittedonMarch19,2010;approvedonAugust2,2010;publishedonlineonOctober14,2011.DiscussionperiodopenuntilApril1,2012;separatediscussionsmustbesubmittedforindi-vidualpapers.ThispaperispartoftheJournalofBridgeEngineering,Vol.16,No.6,November1,2011.ASCE,ISSN1084-0702/2011/6-863871/$25.00.JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011/863Downloaded21Mar2012to3.RedistributionsubjecttoASCElicenseorcopyright.VisitReliabilityBasesforBridgeLoadRatingBridgedesign,ascodifiedintheAASHTO-LRFDspecifications(2007),isestablishedbymodernprinciplesofstructuralreliabilityanalysis.Theprocessbywhichexistingbridgesareratedmustbeconsistentwiththoseprinciples.Uncertaintiesintheperfor-manceofanexistingbridgearisefromvariationsinloads,materialstrengthproperties,dimensions,naturalandartificialhazards,insufficientknowledge,andhumanerrorsindesignandconstruc-tion(Ellingwoodetal.1982;Galambosetal.1982;Nowak1999).Probability-basedlimitstatesdesign/evaluationconceptsprovidearationalandpowerfultheoreticalbasisforhandlingtheseuncertain-tiesinbridgeevaluation.ThelimitstatesforbridgedesignandevaluationcanbedefinedinthegeneralformGX01whereXX1;X2;X3;Xn=loadandresistancerandomvariables.Onthebasisofbridgeperformanceobjectives,theselimitstatesmayrelatetostrength(forpublicsafety)ortoexcessivedeformation,cracking,wearofthetrafficsurface,orothersourcesoffunctionalimpairment.Astateofunsatisfactoryperformanceisdefined,byconvention,whenGX0.Thus,theprobabilityoffailurecanbeestimatedasPfPGX0C138ZfXxdx2wherefXx=jointdensityfunctionofX;and=failuredomaininwhichGx0.Inmodernfirst-order(FO)reliabilityanalysis(Melchers1999),Eq.(2)isoftenapproximatedbyPfC03where=standardnormaldistributionfunction;and=reliabilityindex.Forwell-behavedlimitstates,Eq.(3)usuallyisanexcellentapproximationtoEq.(2),andandPfcanbeusedinterchangeablyasreliabilitymeasures(Ellingwood2000).WhenthefailuresurfaceinEq.(1)iscomplexorwhenthereliabilityofastructuralsystem,inwhichthestructuralbehaviorismodeledthroughfinite-elementanalysis,isofinterest,Eq.(2)canbeevalu-atedefficientlybyMonteCarlo(MC)simulation.TheAASHTOLRFDBridgeDesignSpecifications(2007)areestablishedonFOreliabilityanalysis,appliedtoindividualgirders(Nowak1999;KimandNowak1997;TabshandNowak1991).Withthesupportingprobabilisticmodelingofresistanceandloadterms(Nowak1993;BartlettandMcGregor1996;MosesandVerma1987),anexaminationofexistingbridgedesignpracticesledtoatargetreliabilityindex,equalto3.5basedona75-yearserviceperiod(Nowak1999,Moses2001).Consistentwithsuchreliability-basedperformanceobjective,theAASHTO-LRFDspec-ificationsstipulatethatinthedesignofnewbridges1:25D1:5DA1:75LIRn4whereD=deadloadexcludingweightofthewearingsurface;DA=weightofthewearingsurface(asphalt);(LI)representsliveloadincludingimpact;Rn=designstrength,inwhichRn=nominalresistance;and=resistancefactorwhichdependsontheparticu-larlimitstateofinterest.Thisequationisfamiliartomostdesigners.Whenthereliabilityofanexistingbridgeisconsidered,allow-anceshouldbemadeforthespecificknowledgeregardingitsstruc-turaldetailsandpastperformance.Fieldinspectiondata,loadtesting,materialtests,ortrafficsurveys,ifavailable,canbeutilizedtomodifytheprobabilitydistributionsdescribingthestructuralbehaviorandresponseinEq.(2).Themetricforacceptableperfor-manceisobtainedbymodifyingEq.(2)toreflecttheadditionalinformationgatheredPfPGX0jHC138PT5whereHrepresentswhatislearnedfromprevioussuccessfulperformance,in-serviceinspection,andsupportinginsitutesting,ifany.Thetargetprobability,PT,shoulddependontheeconomicsofrehabilitation/repair,consequencesoffutureoutages,andthebridgeratingsought.IntheAASHTO-LRFRmethod(2007),thetargetfordesignlevelcheckingbyusingHL-93loadmodel(atinventorylevel)is3.5,whichiscomparabletothereliabilityfornewbridges,whereasthetargetforHL-93operatinglevelandforlegal,andpermitloadsisreducedto2.5owingtothereducedloadmodelandreducedexposureperiod(5years)(Moses2001).ThepresenceofHinEq.(5)isaconceptualdeparturefromEqs.(2)and(3),whichprovidethebasisforLRFD.Forexample,trafficdemandsonbridgeslocatedindifferentplacesinthehigh-waysystemmaybedifferent.Totakethissituationintoaccount,LRFRintroducesasetoflive-loadfactorsforthelegalloadrating,whichdependontheinsitutrafficdescribedbytheaveragedailytrucktraffic(ADTT).Furthermore,thecomponentnominalresis-tanceinLRFRisfactoredbyasystemfactorsandamemberconditionfactorcinadditiontothebasicresistancefactorforaparticularcomponentlimitstate.Thesystemfactordependsontheperceivedredundancylevelofagivenbridgeinitsrating,whereastheconditionfactoristoaccountforthebridgessite-specificdeteriorationcondition,andpurportstoincludetheaddi-tionaluncertaintybecauseofanydeteriorationthatmaybepresent.ThebasisfortheLRFRtabulatedvaluesforcwillbefurtherexaminedlaterinthispaper.TheLRFRoptionintheAASHTOMBEextendsthelimitstatedesignphilosophytothebridgeevaluationprocessinanattempttoachieveauniformtargetlevelofsafetyforexistinghighwaybridgesystems.However,theuncertaintymodelsofloadandresistanceembeddedintheLRFRratingformatrepresenttypicalvaluesforalargepopulationofbridgesinvolvingdifferentmaterials,con-structionpractices,andsite-specifictrafficconditions.AlthoughtheLRFRlive-loadmodelhasbeenmodifiedforsomeofthespe-cificcasesasdiscussedpreviously,thebridgeresistancemodelshouldalsobe“customized”foranindividualbridgebyincorpo-ratingavailablesite-specificknowledgetoreflectthefactthateachbridgeisuniqueinitsas-builtcondition.Aratingprocedurethatdoesnotincorporateinsitudataproperlymayresultininaccurateratings(andconsequentunnecessaryrehabilitationorpostingcosts)forotherwisewell-maintainedbridges,asindicatedbymanyloadtests(NowakandTharmabala1988;BakhtandJaeger1990;Mosesetal.1994;FuandTang1995;Faberetal.2000;Barker2001;Bhattacharyaetal.2005).Improvementsinpracticalguidancewouldpermitthebridgeengineertoincludemoresite-specificknowledgeinthebridge-ratingprocesstoachieverealisticevalu-ationsofthebridgeperformance.Thisguidancemusthaveastruc-turalreliabilitybasis.ImprovementsinBridgeRatingbyUsingReliability-BasedMethodsInthissection,thebridgeratingsinlightofthereliability-basedupdatingofin-servicestrengthdescribedintheprevioussectionareexamined.Thepossibilitiesofincorporatingavailablesite-specificdataobtainedfrommaterialtests,loadtests,advanced864/JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011Downloaded21Mar2012to3.RedistributionsubjecttoASCElicenseorcopyright.Visitstructuralanalysis,andsuccessfulserviceperformancetomakefur-therrecommendationsforimprovingratinganalysisareexplored.IncorporationofInSituMaterialTestingThecompanionpapersummarizedtheloadtestofBridgeID129-0045,areinforcedconcreteT-beambridgethatwasdesignedaccordingtotheAASHTO1953designspecificationforH-15loadingandwasconstructedin1957.Thespecified28-daycom-pressionstrengthoftheconcretewas17.2MPa(2,500psi),whereastheyieldstrengthofthereinforcementwas276MPa(40ksi).Thescheduleddemolitionofthisbridgeprovidedanop-portunitytosecuredrilledcorestodeterminethestatisticalproper-tiesoftheinsitustrengthofthe51-yearoldconcreteinthebridge.Four-inchdiameterdrilledcoresweretakenfromtheslabofthebridgebeforeitsdemolition.Sevencoresweretakenfromtheslabatsevendifferentlocationsalongboththelengthandwidthofthebridge.Coresalsoweretakenfromthreeofthegirdersthatwereingoodconditionafterdemolition;thesewerecutinto203mm(8-in.)lengthsandthejaggedendsweresmoothedandcapped,resultinginatotalof14girdertestcylinders.Testsofthese102203mm(48in.)cylindersconformedtoASTMStandardC42(ASTM1995)andtheresultsarepresentedinTable1.Ananalysisofthesedataindicatednostatisticallysignificantdifferenceintheconcretecompressionstrengthinthegirdersandslab,andthedatawerethereforecombinedforfurtheranalysis.Themean(average)com-pressionstrengthoftheconcreteis33MPa(4,820psi)andthecoefficientofvariation(COV)is12%,whichisrepresentativeofgood-qualityconcrete(BartlettandMacGregor1996).Themeanstrengthis1.93timesthespecifiedcompressionstrengthofthecon-crete.Thisincreaseincompressionstrengthoveraperiodofmorethan50yearsistypicaloftheincreasesfoundforgood-qualitycon-cretebyotherinvestigators(WashaandWendt1975).Iftheseresultsaretypicalofwell-maintainedolderconcretebridges,theinsituconcretestrengthislikelytobesubstantiallygreaterthanthe28-daystrengththatiscustomarilyspecifiedforbridgedesignorconditionevaluation.Accordingly,thebridgeen-gineershouldbeprovidedincentivesintheratingcriteriatorateabridgebyusingthebestpossibleinformationfrominsitumaterialstrengthtestingwheneverfeasible(Ellingwoodetal.2009).Itiscustomarytobasethespecifiedcompressionstrengthofconcreteonthe10thpercentileofanormaldistributionofcylinderstrengths(Standard318-05;ACI2005).Asuitableestimateforthis10thper-centilebasedonasmallsampleofdataisprovidedbyfcC22X1C0kV6whereC22X=samplemean;V=samplecoefficientofvariation;andkp%lowerconfidenceintervalonthe10thpercentilecompres-sionstrength.Byusingthe21testsfromBridgeID129-0045withp%75%asanexample,k=1.520(Montgomery1996)andfccanbeexpressedasfc11:5200:124;8203;941psi(27.17MPa),avaluethatis58%higherthanthe17.2MPa(2,500psi)thatotherwisewouldbeusedintheratingcalculations.IntheFEmodelingofthisbridgethatprecededthesestrengthtests,theconcretecompressionstrengthwassetat17.2MPa(2,500psi),whichwastheonlyinformationavailablebeforethematerialtest.Todeterminetheimpactofusingtheactualconcretestrengthinanolderbridgeontheratingprocess,thefinite-elementmodelwasrevisedtoaccountfortheincreasedconcretecompres-sionstrength(andthecorrespondingincreaseinstiffness)intotheanalysisofthebridge.Onlyamodestenhancementintheestimatedbridgecapacityinflexurewasobtained,buta34%increasewasachievedintheshearcapacityratingsforthegirdersbyusingtheresultsofTable1.BridgeSystemReliabilityAssessmentontheBasisofStaticPush-DownAnalysisAlthoughcomponent-baseddesignofanewbridgeprovidesad-equatesafetyatreasonablecost,component-basedevaluationofanexistingbridgeforratingpurposesmaybeoverlyconservativeandresultinunnecessaryrepairorpostingcosts.Itispreferabletoperformloadratingregardingbridgepostingorroadclosurethroughasystem-levelanalysis.Aproperlyconductedproofloadtestcanbeaneffectivewaytolearnthebridgesstructuralperfor-manceasasystemandtoupdatethebridgeloadcapacityassess-mentinsituationsinwhichtheanalyticalapproachproduceslowratings,orstructuralanalysisisdifficulttoperformbecauseofdeteriorationorlackofdocumentation(SarafandNowak1998).However,aproofloadtestrepresentsasignificantinvestmentincapital,time,andpersonnel,andthetrade-offbetweentheinforma-tiongainandtheriskofdamagingthebridgeduringthetestmustbeconsidered.ProoftestsarerarelyconductedbythestateDOTs(Wangetal.2009)forratingpurposes.Oneofthekeyconclusionsfromthecompanionpaper(Wangetal.2011),inwhichbridgeresponsemeasurementsobtainedfromtheloadtestsofthefourbridgeswerecomparedwiththeresultsoffinite-elementanalysesofthosebridgeswithABAQUS(2006),wasthatthefinite-elementmodelingprocedurewassufficientforconductingvirtualloadtestsofsimilarbridges.Thesevirtualloadtestscanprovidethebasisfordevelopingrecommendationsforimprovingguidelinesforbridgeratingsbyusingstructuralreli-abilityprinciples.Asnotedintheintroductorysection,suchguide-linesrequirethebridgetobemodeledasastructuralsystemtoproperlyidentifytheperformancelimitstatesonwhichsuchguide-linesaretobebased.Toidentifysuchperformancelimitstatesandtogainarealisticappraisaloftheconservatisminherentincurrentbridgedesignandconditionratingprocedures,aseriesofstaticpush-downanalysesofthefourbridgeswasperformed.Theseanalysesareaimedatdeterminingtheactualstructuralbehavioroftypicalbridgeswhenloadedwellbeyondtheirdesignlimit;asasidelight,theyprovideadditionalinformationtosupportrationalevaluationofpermitloadapplications(section6A.4.5intheManualofBridgeEvaluation).Inapush-downanalysis,tworatingvehiclesareplacedside-by-sideonthebridgeinapositionthatmaximizestheresponsequan-tityofinterestintheevaluation(e.g.,maximummoment,shear,anddeflection).Theloadsarethenscaledupwardstaticallyandtheper-formanceofthebridgesystemismonitored.Thedeadweightofthebridgestructureisincludedintheanalysis.Theresponseisinitiallyelastic.Asthestaticloadincreases,however,elementsofthebridgestructurebegintoyield,crack,orbuckle,andthegeneralizedload-deflectionbehaviorbecomesnonlinear.Ifthebridgestructureisredundantandthestructuralelementbehaviorsareductile,substan-tialloadredistributionmayoccur.Atsomepoint,however,asmallincrementinstaticloadleadstoalargeincrementindisplacement.Atthatpoint,thebridgehasreacheditspracticalload-carryinglimit,andisatastateofincipientcollapse.Table1.CompressionTestsof48in:CoresDrilledfromRCConcreteBridge(ID129-0045)SourceNumberAverage(psi)Standarddeviation(psi)CoefficientofvariationGirder144,8806030.12Slab74,6985730.12Overall214,8205860.12Note:1psi6:9Pa.JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011/865Downloaded21Mar2012to3.RedistributionsubjecttoASCElicenseorcopyright.VisitThestaticpush-downanalysisisillustratedinFig.1fortheRCT-beambridge(ID129-0045).TheFEmodelingwasperformedwithABAQUS(2006),withrandommaterialpropertiesdeterminedbytheirrespectivemeanvalues.Thepointofinitialyieldingoccursatapproximately4.31timestheHS20-44designloadconfigura-tion,atadeflectionofapproximately36mm(1.4in.),whichisequaltoapproximately1=345timesthespan.Theultimatelive-loadcapacityofthebridgeisapproximately4.8timestheappliedHS20-44loads.FromFig.1,this52-year-oldbridgeshowsacon-siderabledegreeofductilityinbehavior.ThelevelofloadimposedbythefourfullyloadedtrucksduringtheloadtestdescribedinthecompanionpaperisalsoshowninFig.1;thetestload(inmaximumgirdermoment)wasapproximately1.3timesthetwoside-by-sideHS20-44loads.Thecapacityofthisbridgesystemissubstantiallyinexcessofwhatagirder-basedcalculationwouldindicate.Similarpush-downanalyseswereperformedontheotherbridgesdescribedinthecompanionpaper,yieldingtheresultssummarizedinTable2.Theelasticrangesofallfourbridgesareinexcessof4timesthedesignloadlevel,indicatingthelevelofconservatismassociatedwithtraditionaldesignandratingprocedures.AspartoftheefforttodeveloptheAASHTOLRFDBridgeDesignSpecifications,extensivedatabasesweredevelopedtodescribethestrengthofindividualbridgegirdersandvehicleliveloadsprobabilistically(Nowak1999;Moses2001).(TheHL-93live-loadmodelisanoutgrowthofthispreviousresearch.)Thatresearchfocusedonthecapacityofindividualbridgegirders;sys-temeffectswereincludedindirectlyandapproximatelythroughnewgirderdistributionfactorsthatweredevelopedinthecourseoftheproject.Thecapacityofabridgestructuralsystemislikelytobedifferentfromthecapacitypredictedfromananalysisofindi-vidualgirders.Todeterminetheadditionallevelofconservatism(ifany)thatarisesfromsystembehavior,afinite-element-basedsystemreliabilityanalysisofallfourstudybridgeswasconducted.Thissystemreliabilityanalysisprovidesadditionalperspectiveonthe(unknown)levelofconservatismfurnishedbythecurrentgenerationofreliability-basedconditionevaluationandratingpro-ceduresembodiedintheAASHTOManualforBridgeEvaluati
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年建造師考試復(fù)習(xí)試題及答案
- 施工現(xiàn)場環(huán)境保護措施試題及答案
- 消防演練效果充分性試題及答案
- 中級會計復(fù)習(xí)有效策略與技巧試題及答案
- 外語水平考試影響因素詳細分析試題及答案
- 改變思維方式 2024年高級審計師考試試題及答案
- 消防工程師職業(yè)發(fā)展規(guī)劃試題及答案
- 青春自護暑期安全
- 江蘇衛(wèi)生健康職業(yè)學(xué)院招聘筆試真題2024
- 中級審計師考試各科目試題及答案
- 工傷職工舊傷復(fù)發(fā)確認鑒定申請表-模板
- 接觸網(wǎng)完整版本
- 第二講中國經(jīng)濟行穩(wěn)致遠-2025年春季學(xué)期 形勢與政策課件
- 綠色低碳轉(zhuǎn)型戰(zhàn)略背景下綠色會展可持續(xù)發(fā)展研究
- LY/T 2071-2024人造板類產(chǎn)品生產(chǎn)綜合能耗
- 統(tǒng)編版語文一年級下冊2024-2025學(xué)年度語文園地五(課件)
- 2024-2030年中國橡塑防滑墊市場競爭格局與前景發(fā)展策略分析報告
- 家具的類型(分類全面)-課件
- 1、汽輪機冷端系統(tǒng)診斷和運行優(yōu)化
- 火災(zāi)安全培訓(xùn)總結(jié)
- 《城鎮(zhèn)液化石油氣加臭技術(shù)規(guī)程》
評論
0/150
提交評論