




已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
angularChinaReceived5September2008Accepted17January2009AvailableonlinexxxxKeywords:AZ31magnesiumalloyEqualchannelangularextrusionFiniteelementmethodfinegrainedmicrostructuresinmagnesiumalloys.Itiscrucialtounderstandtheeffectofdiedesignontoobtainthesematerialswithhighstrengthandtoughness.InECAE,aworkpieceispressedthroughadiethatcontainstwochan-nelswithequalcross-sectionmeetingatanangle.Becausethecross-sectionoftheworkpieceremainsthesameduringextrusion,theprocesscanberepeateduntiltheaccumulateddeformationreachesadesiredlevel.Highstraincanbeachieved.FiniteelementmethodisoneoftheimportantapproachestounderstandtheofbackpressurebySonetal.,theoptimumdiedesignforhomoge-neousplasticdeformationbyYoonSCetal.7.However,thesestudiesassumedtwo-dimensional(2D)approximationofplanestrainconditionanddonotdiscusstheinhomogeneityofstressandstrain.Resultsobtainedby2Danalysisgivelimitedinforma-tion,inadditiontotheinherent2Dapproximationerrors.Someresearchers810haveexploredtheECAEprocessusingthree-dimensions(3D)plasticitytheoreticandsimulationsoft-ware.LuisPrezandLuri11usedupperboundmethodtoanalyzeinthree-dimensionsECAEdiesforrectangularorsquarecross-sec-*Correspondingauthor.Fax:+862368851783.MaterialsandDesignxxx(2009)xxxxxxContentslistsavailableandARTICLEINPRESSE-mailaddress:(H.-J.Hu).1.IntroductionUltra-finegrainedmaterialshavebeenwidelyinvestigatedduetotheirimprovedmechanicalpropertiessuchashighstrengthandductility.Varioustechniqueshavebeendevelopedtoobtainultra-finegrainedmaterials.Severeplasticdeformation(SPD)tech-niques,likeequalchannelangularextrusion(ECAE),highpressuretorsion(HPT),cyclingchanneldiecompression(CCDC)andaccu-mulativerollbonding(ARB)aremostcommonlyforproducingsubmicrongrainstructuresinmetallicmaterialsatarelativelylowcost.Amongthem,theequalchannelangularextrusion(ECAE),originallydevelopedbySegal,isoneofthemosteffectivemethodsdeformationoccurringintheECAEprocess.ManyFEM-basedanal-yseshavebeenperformedtodeterminethedeformationbehaviorofmaterialsandtoestimatethedevelopedstrainintheECAPpro-cess.TheseresearchworkincludetheeffectofchannelangleandoutercornerforfrictionlessconditionbyRaghavanS1,theeffectofchannelangleandoutercornerbyKimetal.,theeffectofoutercorneroninhomogeneitybySuhJ-Yetal.2,thecornergapfor-mationanditseffectbyKimandKim3,theeffectofchannelan-gleandcornerangleonmaterialflowbyLangandShyong4,theextensiveworkondifferentmaterialmodels,outercornerangleandcoefficientoffrictionbyLeeSCetal.5,theworkonoriginofinhomogeneousbehaviorofmetalbyWeietal.6,theeffectOutercornerangleDeformationinhomogeneity0261-3069/$-seefrontmatterC2112009Publishedbydoi:10.1016/j.matdes.2009.01.022Pleasecitethisarticleinpressas:HuH-J(2009),doi:10.1016/j.matdes.2009.01.022thedeformationbehavior,straindistributionandloadrequirement.Inthepapernewthree-dimensional(3D)geometricmodelswithdifferentcornerangles(90C176,120C176)andwithorwithoutinnerroundfilletsinthebottomdieweredesigned.SomeimportantprocessparameterswereregardedastheinitialandboundaryconditionsusedinDEFORMTM-3Dsoftwaresuchastemperaturesofthedieandbillet,thefric-tioncoefficient,etc.Toensuretheconvergenceofthesimulation,thegeometricalanddisplacementcon-ditionsandreasonableconvergenceerrorlimits,etc.havebeenconsidered.ThedeformationheterogeneityofECAEwasanalyzedfromthesimulationandexperimentalresults.Thedeformationhomogeneitycausedbyfilletsatoutercornerwasimprovedcomparingwiththediewithoutfillets.ThecumulatemaximumstrainsdecreasedwiththefilletsofoutercornermanufacturedinECAEdieandtheinnercorneranglesincreasing.TherequirementextrusionforcedecreasedwiththefilletsmadeatoutercornerangleinECAEdie.TheanalysesshowedthatbetterstructuresofECAEdieincludedappro-priateoutercornerfilletsandtheinnercornerangle90C176.Itwasdemonstratedthatthepredictedresultswereingoodagreementwithexperimentsandthetheoreticalcalculationandtheresearchconclusionsfromotherliteratures.C2112009PublishedbyElsevierLtd.Articlehistory:Equalchannelangularextrusion(ECAE)iswidelyinvestigatedbecauseofitspotentialtoproduceultra-Thediestructuredesignofequalchannelmagnesiumalloybasedonthree-dimensionalHuHong-Juna,*,ZhangDingFeia,b,YangMingBocaNationalEngineeringResearchCenterforMagnesiumAlloys,ChongqingUniversity,ChongqingbCollegeofMaterialsScienceandEngineering,ChongqingUniversity,Chongqing400045,cCollegeofMaterialsScienceandEngineering,ChongqingInstituteofTechnology,ChongqingarticleinfoabstractMaterialsjournalhomepage:www.elseElsevierLtd.etal.ThediestructuredesignextrusionforAZ31finiteelementmethod400044,China400050,ChinaatScienceDirectD/locate/matdesofequalchannelangularextrusionforAZ31.JMaterDesigntionwherebothinternalandexternalradiiweretakenintoac-countandtheintersectionanglewasmade.The3DsimulationanalysisofECAPwasperformedbyChungetal.12usingacom-mercialfinitevolumemethod(FVM)codetoanalyzetheeffectivestrainandstressforonepassoftheprocess.3DFEMwasappliedtoanalyzethecommercialpureTi(CP-Ti)billetsubjectedtofour-passNomenclatureUtheinnercornerangle(C176)estrain(mm/mm)eccriticalstrain(mm/mm)Wtheoutercornerangle(C176)2H.-J.Huetal./MaterialsandDesignARTICLEINPRESSECAEprocessat400C176CwithBcrouteinRef.13.Buttherewerefewresearchersadopted3DsimulationtechnologiestoinvestigatethedeformationbehaviorsofmagnesiumAZ31especiallytheinfluencesofdiestructuresonstraindistributionsandextrusionquality.ManyoftheearlystudiesofECAPwerelimitedtothepro-cessingofsoftpuremetalsorsolidsolutionalloys.Morerecently,significantattentionhasbeendevotedtothepressingofmorecomplexalloysandsomemetalswithlimitednumbersofslipsys-temsespeciallyformagnesiumalloys.Forthesedifficult-to-workmaterials,threedifferentstrategieshavebeenadoptedwiththeoverallobjectiveofachievingsuccessfulprocessingbyECAE.Cur-rentresearchinterestisintheprocessingtoobtainfine-grainedbulkmagnesiumalloyspecimensfromECAE1420.AsketchofsuchanECAEdieisshowninFig.1.Thebottomdieconsistsoftwointersectingchannelsofthesamecross-sectionmeetingataninnercornerangleU(seeFig.1).Inthisfigure,thean-gleWdefinestheoutercurvatureoftheintersectionbetweenthetwochannels.Inthiscontext,theuseoftheextremeprinciples,forinstance,theupperboundmethodhasgainedalotofattentiontoestimatethepressureneededfortheplungeraswellastheaccu-mulatedeffectivestrainresultingfromtheECAEmethod.Thenumericalsimulationwiththehelpofthefiniteelementmethod(FEM)hasbeenextensivelyusedtobetterunderstatingtheECAEmethod2125.TheplasticdeformationbehaviorduringECAEisgovernedmainlybythediegeometry,thematerialitselfandtheprocessingconditions.ExperimentaldataandfiniteelementstudyofdiesgeometryinfluenceonECAEprocesshimselfarepresented.ItisnecessarytotheoreticallymodeltheECAEprocessinordertostudyvariouscomplicatedeffectsforbetterprocesscontrol.Thisstudyistonumericallyanalyzethedeformationbehaviorsinequalchannelangularextrusions(ECAE)ofmagnesiumalloyAZ31andpredictthestrainsandextrusionforcesofECAEtoformnanostructureprocessbasedonvariousdiestructures.Fig.1.SchematicdiagramofanECAPdieshowinginnercornerangle(U)andoutercornerangle(w).Pleasecitethisarticleinpressas:HuH-Jetal.Thediestructuredesign(2009),doi:10.1016/j.matdes.2009.01.022Inthepresentwork,aquasi-staticsolutiontotheECAEmethodbytheFEMsimulationwascarriedoutusingdieswithintersectinganglesU=90C176and120C176byonlyonepassofextrusion.ThefourECAEmodelshavebeenerectedinUGsoftwareandmeshedandsimulatedinDEFORMTM-3Dcode.Numericalsimulationproceduresandmodelingofthediesandbillet,boundaryconditions,conver-genceerrorlimitsfordeformationsimulationsandelementformu-lationshavebeenintroduced.TheeffectsofdifferentdiegeometriesonthedeformationinhomogeneityduringECAPwereinvestigated.ExperimentsfortwoECAEdieswithorwithoutfilletshavebeendoneinlaboratorytovalidatethesimulationresults.Be-causetheevolutionofthemicrostructuresandmechanicalproper-tiesofdeformedmaterialaredirectlyrelatedtotheamountofplasticdeformation,theunderstandingofthephenomenonassoci-atedwiththestraindevelopmentisveryimportantinECAE.Distri-butionsofeffectivestressandstrain,influencesofchannelangleonthedeformationindifferentzonesanddeformationhomogeneity,maximumstrainhavebeendiscussedindetail.2.MaterialmodelsandsimulationdetailsThecommercialFEMcode,DEFORM3DVersion5.0,wasusedtocarryoutthesimulationofone-passECAEprocess.2.1.AssumptionsandnumericalsimulationproceduresAwroughtmagnesiumalloyAZ31with3%aluminum,1%zincwasusedasthebilletmaterialbothincomputersimulationandexperimentalverification.Thenumericalsimulationswereper-formedquasi-staticallyusingacommercialfiniteelementcode(DEFORMTM-3D).DEFORMTM-3Dwasacommercialpackagedevel-opedbySFTC(ScientificFormingTechnologyCorporation).Itwasafiniteelementmethod(FEM)basedprocesssimulationsystemdesignedtoanalyze3Dflowofvariousmetal-formingprocesses.Itprovidedvitalinformationaboutmaterialandthermalflowdur-ingformingprocesses.Thebilletwasassumedtobeelasticplasticmaterial.Thefollowingassumptionswasadoptedinpresentanal-ysis:(1)boththecontainerandthediearerigidbodies;(2)theextrusionbilletwasarigid-plasticmaterial;and(3)thefrictionfactorsbetweentheextrusionbilletandtheram,container,anddiewereconstant.Thesimulationprocedureswereasfollows:(1)the3Dgeome-tries(billets,ramsanddies)achievedbyconstructing3DCADmodelsweredefinedinUnigraphicssoftware.Geometriescanbedefinedas3DIGESorSTLfiles.(2)Stoppingstrokewasset,theRradiusoftheinnercorner(mm)_eeffectivestrainrate(sC01)xxx(2009)xxxxxxnumberofstepsdefinedandsimulationmodeandEnglishorSIunitswereselected.(3)Theobjects(billetsanddies)weremeshed.Theobjectswerepositioned,withtheworkpieceasthereferenceobject;bothtoolsandramincontactwiththeworkpiece.Thematerialspropertiesweredefined.(4)Thermalboundarycondi-tionsweredefined.(5)Objectstemperatureswereinitialized.(6)Contactboundaryconditionsweregeneratedandfrictioncoeffi-cientsbetweenbilletsanddies,billetsandramsweredefined.(7)Rammovementparameters(directionandspeed)wereas-signed.(8)Thedatabasewascheckedandgeneratedandcalcu-lated,FEAtosimulatethehotextrusionprocesswasperformed.(9)Thesimulationresultswerereadfromthepostprocessor.ofequalchannelangularextrusionforAZ31.JMaterDesign2.2.ModelingofthediesandramsThediegeometriesusedinthesimulationsareshowninFig.2.Thebilletcoordinateaxis(xyz)employedinthepresentstudyisshowninFig.2.Thex-,y-andz-directionswereparalleltoextru-siondirection(ED),verticaldirection(ND)andtransversedirection(TD),respectively.ThechannelanglesU=90C176andU=120C176areconsideredandillustratedrespectivelyinFig.2aandbandthecor-nerangle(W)ofthediesareassumedtoequalto0.ThemodifiedgeometricmodelswithinnerroundfilletsattheoutercornerareshowninFig.2candd.ThegeometricalparametersofthefourECAEdiesforFig.2arelistedinTable2.Thechannelanglecornerradiusattheintersectionofthetwochannelswas2mmandoutercornerangleradiuswas18mm.Thelengthofinletchannelwas50mmandoutletchannellengthwas25mm.Boththeinletandoutletchannelshadthesamedimensionsofsquarecross-section(16mm).Table3givesthedimensions,extrusionspeedandtemperatureusedincomputersimulation,etc.,whichareidenticaltothoseap-pliedinextrusionexperiments.Thespeedofram(moveddownalongtheinletchannel)was10mmsC01asinthesimulationsandexperiments.Thestrokeoframwas50mm.Forthesakeofsimplicity,thediesandpressingramwereas-sumedtoberigidbodiesthatundergonopermanentdeformation,whichmechanicalpropertiesemployedanH13toolsteelwiththeYoungmodulusandthermalconductiondependentonthetemper-atureshowninFig.3aandb.Poissonsratio(m)was0.3.Fourdis-tinctgeometricmodelshavebeenanalyzedby(finiteelementTable2ThegeometricalparametersoftheECAEdie.U(C176)W(C176)RrFig.3a90000Fig.3b99182Fig.3c120000Fig.3d12060182Table3Simulationandexperimentalparameters.Billetlength(mm)50Billetdiameter(mm)16insiderdiameterofECAEdie(mm)16outsidediameterofdie(mm)50Initialbillettemperature(C176C)300Initialtoolingtemperature(C176C)275Strainraterangeforflowstressmeasurement(sC01)0.0110Temperaturerangeforflowstressmeasurement(C176C)250450Ramspeed(mm/s)10Frictionfactorofthecontainerbilletinterface0.25Frictionfactorbetweenthebilletanddie0.25H.-J.Huetal./MaterialsandDesignxxx(2009)xxxxxx3ARTICLEINPRESSFig.2.Schematicdiagramsofthethree-dimensionalECAPdieFEMmodelingshowing:(a)channelangleequalto90C176;(b)channelangleequalto120C176;(c)channelangle90C176withoutercornerangle;(d)channelangle120C176withoutercornerangle,whererdenotestheradiusofthechannelangle,Rtheradiusoftheoutercornerangle.Table1PhysicalpropertiesoftheAZ31workpiece.PropertyAZ31Poissonsratio0.35Coefficientoflinearexpansion26.8EC06Density1780kg/m3Poissonsratio0.35Youngsmodulus45,000MPaEmissivity0.12Pleasecitethisarticleinpressas:HuH-Jetal.Thediestructuredesign(2009),doi:10.1016/j.matdes.2009.01.022Fig.3.ThematerialpropertiesforH13.ofequalchannelangularextrusionforAZ31.JMaterDesignanalysis)FEAtorevealthedeformationbehaviorsandtheirrela-tionshipwiththedesignconfiguration.2.3.ModelingofthebilletThemagnesiumbilletusedinthecalculationswasaroundcross-section(diameter16mm)andalengthof50mm(16mmC250mm).TheAZ31wasconsideredasanisotropicelasticplasticmaterial.Thetensilestressstraincurveat300C176CofAZ31billet(annealedat400C176Cfor12h),asshowninFig.4,theflowstress/straindataobtainedfromtheuniaxialcompressiontestswereintroducedintoFEAusingcommercialsoftwarepack-agesDEFORMTM-3D.TheelasticpropertieswereYoungsmodulusE=45GPaandPoissonsratiom=0.3.Materialpropertyparame-tersoftheAZ31workpiecearelistedinTable1.2.4.MeshingmethodInallsimulations,anautomaticremeshingschemewasusedto4H.-J.Huetal./MaterialsandDesignARTICLEINPRESSaccommodatelargestrainsandtotakeintoaccounttheoccurrenceofflowlocalization,whichpreventedfurthercalculationduringthesimulation.Theelementswereautomaticallyremeshediftheybe-cametoodistortedduringECAEsimulationprocess.Alltheextrusiontoolingincludedinthesimulationwasmeshedwithtetrahedralelementsanditsheatexchangewiththework-pieceincorporatedintosimulation.ThesimulationparametersusedarelistedinTable3.Toenhancetheefficiencyofsimulationandobtainspecificresolutionsintheareasofparticularinterest,anumberofwindowswithanincreasedelementdensitywereap-pliedtogeneratelocalfinerelements,especiallyaroundthechan-nelcornerfordie.Toensuresimulationaccuracyandstability,theabsolutemeshdensitywasusedtokeeptheelementsizeatanypositionnearlyconstantduringthesimulation,becauseitwasthisdensitythatdefinedthenumberofelementsperunitlengthonthesurfaceoftheworkpiece.Theminimumsizeoftheelementwas0.250.35mm.Thebilletwasdividedinto20,000four-nodetetra-hedralelements.Totalnumberofelementsoframanddiewere8000and20,000,respectively.Thenumbersofelementswerefoundtobesufficienttoexpresslocaldeformationofthestrainrateinsensitiveworkpiecesthroughcalculationswithvaryingthenum-berofelements.Tolimitthesizesofsimulationdatabasefilesandenhancesimulationspeed,theroundextrudatewascutoffatthelengthof50mmwhenitslengthexceeded50mm.Asmallrelativeinterferencedepthof0.3wasdefinedtotriggertheremeshingpro-Fig.4.Truestress/truestraincurvesofAZ31obtainedfromcompressiontestsat300C176Cunderdifferentstrainrateandcorrectedfordeformationheatingduringthetesting.Pleasecitethisarticleinpressas:HuH-Jetal.Thediestructuredesign(2009),doi:10.1016/j.matdes.2009.01.022cedurewhenanyelementattheedgeoftheworkpiecehadbeenpenetratedintoandthepenetrationdepthexceeded30%oftheori-ginallengthofthesurfaceedgethathadacontactnodeateachend.2.5.Boundaryconditions2.5.1.ContactandfrictionboundaryconditionsContactboundaryconditionswereappliedtonodesofbillet,andspecifycontactbetweenthosenodesandthesurfaceofram.InordertoassurethequadraticconvergenceoftheNewtonRaph-sonmethodusedinthecode,thecompressivedisplacementsim-posedonthebillettopregionintheverticaldirectionwerefixedinincrementsof0.10mmuptoatotaldisplacementof50mm.TheNewtonRaphsonmethodwasrecommendedformostprob-lemsbecauseitgenerallyconvergedinlessiterationthantheotheravailablemethods.However,solutionsweremorelikelytofailtoconvergewiththismethodthanwithothermethods.Torepresentthefrictionbehaviorasaconsequenceoftheshearstressandthecontactpressure,thegeneralizedCoulombslawwasused.Thefrictionattheworkpiecetoolinginterfaceswasconsid-eredtobeofshear-type.Itwaswellknownthatthislawstatedproportionalitybetweenshearyieldstre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 超市無殘留農(nóng)藥合同協(xié)議
- 購(gòu)買倉(cāng)庫(kù)地皮合同協(xié)議
- 貼片加工協(xié)議書范本
- 資質(zhì)代理協(xié)議合同協(xié)議
- 豆腐廠轉(zhuǎn)讓合同協(xié)議
- 貸款合同延期補(bǔ)充協(xié)議
- 貿(mào)易品種買賣合同協(xié)議
- 調(diào)料銷售協(xié)議合同協(xié)議
- 購(gòu)買地板瓷磚合同協(xié)議
- 新思路引領(lǐng)新機(jī)遇
- 量子信息技術(shù)國(guó)內(nèi)外標(biāo)準(zhǔn)化進(jìn)展報(bào)告(2024)-量子科技產(chǎn)學(xué)研創(chuàng)新聯(lián)盟
- 2025合法的有限公司勞動(dòng)合同范本
- 產(chǎn)后腰痛的健康宣教
- 可再生能源技術(shù)發(fā)展與應(yīng)用考核試卷
- 報(bào)關(guān)實(shí)務(wù)-教學(xué)課件 第三章 海關(guān)檢驗(yàn)檢疫
- 市政道路工程關(guān)鍵施工技術(shù)工藝及工程項(xiàng)目實(shí)施的重點(diǎn)難點(diǎn)和解決方案
- T-CSES 144-2024 城市大氣污染源排放清單編制技術(shù)指南
- 2024年中國(guó)人民幣收藏品市場(chǎng)調(diào)查研究報(bào)告
- 小學(xué)家長(zhǎng)會(huì)-做好孩子手機(jī)管理主題班會(huì)課件
- 2022年焊接技術(shù)賽項(xiàng)評(píng)分標(biāo)準(zhǔn)
- 03D201-4 10kV及以下變壓器室布置及變配電所常用設(shè)備構(gòu)件安裝
評(píng)論
0/150
提交評(píng)論