




已閱讀5頁,還剩52頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第一章第1講,1,第一章信號和系統(tǒng)的概念,第一章第1講,2,1信號的概念,信號消息與信號:將消息(語言、文字、圖象、數(shù)據(jù)等)轉(zhuǎn)換為變化的電量,即電信號。圖形形式:各種波形(隨時間變化的電流或電壓)數(shù)學(xué)形式:各種函數(shù)。信號的分類確定信號與隨機(jī)信號連續(xù)信號與離散信號周期信號與非周期信號能量信號與功率信號,第一章第1講,3,確定信號與隨機(jī)信號,確定信號指一個可以表示為確定的時間函數(shù)的信號,即對于某一時刻,信號有確定的值。隨機(jī)信號則不同,它不是一個確定的時間函數(shù),通常只知道它取某一值的概率。,第一章第1講,4,連續(xù)信號指在所討論的時間內(nèi),對任意時刻值除若干個不連續(xù)點(diǎn)外都有定義的信號。離散信號是指只在某些不連續(xù)規(guī)定的時刻有定義,而在其他時刻沒有定義的信號。,連續(xù)信號與離散信號,有始信號或因果信號,有始信號或因果信號,無限信號或無時限信號,無限信號或無時限信號,第一章第1講,5,周期信號與非周期信號,周期信號是指一個每隔一定時間T,周而復(fù)始且無始無終的信號。(在較長時間內(nèi)重復(fù)變化)非周期信號在時間上不具有周而復(fù)始的特性。,第一章第1講,6,能量信號與功率信號,能量信號和功率信號的定義信號可看作是隨時間變化的電壓或電流,信號f(t)在歐姆的電阻上的瞬時功率為|f(t)|,在時間區(qū)間所消耗的總能量和平均功率分別定義為:能量信號:信號總能量為有限值而信號平均功率為零。功率信號:平均功率為有限值而信號總能量為無限大。,特點(diǎn)信號f(t)可以是一個既非功率信號,又非能量信號,如單位斜坡信號。但一個信號不可能同時既是功率信號,又是能量信號。周期信號都是功率信號;非周期信號或者是能量信號t,f(t)=0,或者是功率信號t,f(t)0。,第一章第1講,7,能量信號與功率信號的判別?,判斷信號,是否為能量信號或功率信號。,解:,所以為能量信號,為功率信號。,第一章第1講,8,信號的特性,時間特性信號表現(xiàn)出一定波形的時間特性,如出現(xiàn)時間的先后、持續(xù)時間的長短、重復(fù)周期的大小及隨時間變化的快慢等。頻率特性任意信號在一定條件下總可以分解為許多不同頻率的正弦分量,即具有一定的頻率成分。信號的頻譜分析就是研究信號的頻率特性。,第一章第1講,9,幾種具體信號的定義,無時限信號:在時間區(qū)間(-,+)內(nèi)均有f(t)0的信號。因果信號:若當(dāng)t0時f(t)0的信號。有始信號:若當(dāng)tt1時f(t)0的信號。起始時刻為t1。因果信號為有始信號的特例。有終信號:若當(dāng)tt2時f(t)=0,若當(dāng)t0指數(shù)上升曲線,0為指數(shù)增長的正弦信號,0為指數(shù)衰減的正弦信號,第一章第1講,11,階躍函數(shù)和沖激函數(shù),單位階躍函數(shù),單位沖激函數(shù),(t)與(t)的關(guān)系:,面積為1,第一章第1講,12,延遲的階躍函數(shù)定義為:,用階躍函數(shù)可以表示方波或分段常量波形:,這就是一個門函數(shù)(方波)的表達(dá)式。用這種門函數(shù)可表示其它一些函數(shù),延遲的階躍函數(shù),第一章第1講,13,也可以用門函數(shù)的方法求:,也可以用門函數(shù)的方法求:,延遲的階躍函數(shù),第一章第1講,14,f(t)(t)的意義,f(t)乘門函數(shù),只保留門內(nèi)的值,將f(t)(t)向右移,將f(t)(t)向左移,第一章第1講,15,沖激函數(shù)的性質(zhì),延遲的沖激函數(shù),加權(quán)特性,抽樣特性,是沖激函數(shù)的嚴(yán)格的數(shù)學(xué)定義。,第一章第1講,16,沖激函數(shù)的性質(zhì),單位沖激函數(shù)為偶函數(shù),尺度變換,(t)的導(dǎo)數(shù)及其性質(zhì),這里a和t0為常數(shù),且a0。,定義:稱單位二次沖激函數(shù)或沖激偶。,第一章第1講,17,沖激偶的性質(zhì),沖激偶的抽樣特性,沖激偶的加權(quán)特性,沖激偶(t)是t的奇函數(shù),任何偶函數(shù)的導(dǎo)數(shù)為奇函數(shù)。,第一章第1講,18,符號函數(shù)和抽樣函數(shù),符號函數(shù),Sgn(t)是奇函數(shù),可以表示成:sgn(t)=-1+2(t)=(t)-(-t),抽樣函數(shù),Sa(t)是偶函數(shù),Sa(0)=1t=n時,Sa(t)=0,t時,Sa(t)0,第一章第1講,19,例1,下列各表達(dá)式中錯誤的是_。,C,第一章第1講,20,例2,下列各表達(dá)式中錯誤的是_。,B,第一章第1講,21,例3,繪出下列各時間函數(shù)的波形,注意它們的區(qū)別:,f(t)乘門函數(shù),只保留門內(nèi)的值,使t1則f(at)將f(t)的波形沿時間軸壓縮至原來的1/a,壓縮,0a0時作用于系統(tǒng)的激勵,t0時不會在系統(tǒng)中產(chǎn)生響應(yīng)。系統(tǒng)的性質(zhì)線性系統(tǒng)的性質(zhì)齊次性:若e(t)r(t),則ke(t)kr(t)疊加性:若e1(t)r1(t),e2(t)r2(t),則e1(t)+e2(t)r1(t)+r2(t)線性性質(zhì):條件同上,則ae1(t)+be2(t)ar1(t)+br2(t)分解特性:,注意幾點(diǎn)結(jié)論:零輸入響應(yīng)是初始值的線性函數(shù);零狀態(tài)響應(yīng)是輸入信號的線性函數(shù)。但全響應(yīng)既不是輸入信號也不是初始值的線性函數(shù)。,5系統(tǒng)的概念,系統(tǒng)響應(yīng),零輸入響應(yīng)(由初始值引起),零狀態(tài)響應(yīng)(由輸入引起),第一章第1講,47,非時變性質(zhì),線性非時變系統(tǒng)(零狀態(tài)),第一章第1講,48,由線性常系數(shù)微分方程描述的線性時不變(LTI)系統(tǒng)為,線性非時變系統(tǒng),所有的項(xiàng)都包括了r(t)或e(t)。所有的系數(shù)都是常數(shù)(而不是r(t)、e(t)或t的函數(shù))。,下列因素導(dǎo)致系統(tǒng)微分方程是非線性或時變的:若有任何一項(xiàng)是常數(shù)或是r(t)或e(t)的非線性函數(shù),則它是非線性的。若r(t)或e(t)中的任何一項(xiàng)的系數(shù)是t的顯時函數(shù),則它是時變的。,若當(dāng)t0時激勵e(t)=0,則當(dāng)t0時響應(yīng)r(t)=0。,因果性,也就是說,如果響應(yīng)r(t)并不依賴于將來的激勵如e(t+1),那么系統(tǒng)就是因果的。,第一章第1講,49,線性非時變系統(tǒng)的分析方法,建立系統(tǒng)的數(shù)學(xué)模型連續(xù)系統(tǒng)的數(shù)學(xué)模型為線性常系數(shù)微分方程;離散系統(tǒng)的數(shù)學(xué)模型為線性常系數(shù)差分方程。運(yùn)用電路理論的方法求出數(shù)學(xué)模型;從系統(tǒng)模擬圖求出數(shù)學(xué)模型;時域分析法:用經(jīng)典的方法求解微分方程和差分方程。變換域分析法:連續(xù)系統(tǒng)采用拉氏變換方法,離散系統(tǒng)采用變換方法。頻域分析法:以角頻率為變量來研究信號和系統(tǒng)的頻率特性,即頻譜分析,采用傅里葉變換的方法。對多輸入多輸出系統(tǒng):狀態(tài)空間變量法。,第一章第1講,50,問題1:如何判斷系統(tǒng)的類型?,判斷系統(tǒng)是否為線性系統(tǒng)按線性性質(zhì),即疊加性來判斷。根據(jù)式:Tae1(t)+be2(t)=ar1(t)+br2(t);Te(t)表示系統(tǒng)對e(t)的響應(yīng)。滿足此式即為線性系統(tǒng),否則為非線性系統(tǒng)。判斷系統(tǒng)是否為非時變系統(tǒng)按非時變性質(zhì)來判斷。根據(jù)式:Te(t-t0)=r(t-t0);滿足此式即為非時變系統(tǒng),否則為時變系統(tǒng)。判斷系統(tǒng)是否為因果系統(tǒng)則按其輸出變化不發(fā)生在輸入變化之前的系統(tǒng)為因果系統(tǒng),否則為非因果系統(tǒng)。對于線性非時變系統(tǒng),若滿足t0時,系統(tǒng)的沖激響應(yīng)h(t)=0的系統(tǒng)為因果系統(tǒng)。,第一章第1講,51,例1,系統(tǒng)模型為:r(t)=sine(t)(t),故為非線性系統(tǒng)。,故為時變系統(tǒng)。,顯然輸出變化不發(fā)生在輸入變化之前,故為因果系統(tǒng)。,分析如下:,第一章第1講,52,例2,系統(tǒng)模型為:r(t)=e(1-t),故為線性系統(tǒng)。,故為時變系統(tǒng)。,當(dāng)t=0時,r(0)=e(1),響應(yīng)r(t)依賴于將來的激勵,故為非因果系統(tǒng)。,分析如下:,將t用(t-t0)代替,第一章第1講,53,例3,設(shè)系統(tǒng)的初始狀態(tài)為x(0),激勵為f(t),各系統(tǒng)的全響應(yīng)y(t)與激勵和初始狀態(tài)的關(guān)系如下,試判斷下列系統(tǒng)是否為線性的、時不變的?,解:響應(yīng)滿足分解特性,,零輸入響應(yīng)顯然是初始狀態(tài)的線性函數(shù),即零輸入線性。,零狀態(tài)響應(yīng):,故,零狀態(tài)響應(yīng)是激勵的線性函數(shù)。故該系統(tǒng)為線性系統(tǒng)。,故該系統(tǒng)是時變系統(tǒng),第一章第1講,54,例4,判斷下列微分方程所描述的系統(tǒng)是否為線性的、時不變的?,解:(1)該方程的所有系數(shù)是常數(shù),所有的項(xiàng)都包括了y(t)或f(t),故描述的系統(tǒng)是線性時不變系統(tǒng)。,(2)該方程的一項(xiàng)系數(shù)是t的函數(shù),所有的項(xiàng)都包括了y(t)或f(t),故描述的系統(tǒng)是線性時變系統(tǒng)。,(3)該方程的一項(xiàng)系數(shù)是y(t)的函數(shù),而y(2t)將使系統(tǒng)隨時間變化,故描述的系統(tǒng)是非線性時變系統(tǒng)。,第一章第1講,55,問題2:用分解特性求系統(tǒng)響應(yīng)?,某一線性系統(tǒng)有兩個起始條件和,輸入為,輸出為,并已知:,(1)當(dāng)時,,(2)當(dāng)時,,(3)當(dāng)時,,求:當(dāng)時的,解:零輸入響應(yīng)是初始值的線性函數(shù),故,將(1),(2)條件代入,得:,解得:,所以,零輸入響應(yīng)為,所以,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 成功心理定律
- java代理機(jī)制面試題及答案
- 腫瘤患者夏季防暑指南
- 工程人員培訓(xùn)
- 郵政綜柜培訓(xùn)
- 羊水栓塞的產(chǎn)科護(hù)理查房
- 2025年中國內(nèi)部防火門行業(yè)市場全景分析及前景機(jī)遇研判報告
- 針織教程培訓(xùn)課件
- 腎內(nèi)科飲食指導(dǎo)
- 中醫(yī)腫瘤消融方案
- 嬰幼兒配方乳粉市場銷售管理規(guī)范
- 教科版四年級下冊科學(xué)期末測試卷含完整答案(各地真題)
- 小班語言《誰的救生圈》課件
- 海思芯片PC-測試技術(shù)規(guī)范
- 內(nèi)陸?zhàn)B殖與水生植物種植
- 集體協(xié)商培訓(xùn)課件
- Unit 3 What would you like A Let's learn(教學(xué)設(shè)計)人教PEP版英語五年級上冊
- 物業(yè)社區(qū)團(tuán)購方案
- 仙家送錢表文-文字打印版
- 實(shí)驗(yàn)室規(guī)劃裝修設(shè)計
- 2023年麻城市社區(qū)工作者招聘考試真題
評論
0/150
提交評論