




已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河 北 工 業(yè) 大 學(xué)畢業(yè)設(shè)計(論文)外文資料翻譯學(xué) 院: 土木工程學(xué)院 系(專業(yè)): 姓 名: 學(xué) 號: 外文出處: 附 件: 1.外文資料翻譯譯文;2.外文原文。 指導(dǎo)教師評語: 簽名: 年 月 日注:請將該封面與附件裝訂成冊。附件1:外文資料翻譯譯文將玻璃鋼外套用于鋼筋混凝土框架結(jié)構(gòu)抗震加固的最優(yōu)設(shè)計主題:外包纖維增強高分子復(fù)合材料(玻璃鋼)是一項正在完善的為強化/改造鋼筋混凝土(RC)結(jié)構(gòu)的技術(shù), 尤其 玻璃鋼與鋼筋混凝土柱隔離外套已經(jīng)被證明能非常有效地提高了柱的強度和韌性,成為的鋼筋混凝土結(jié)構(gòu)抗震加固的關(guān)鍵技術(shù)但是大量的研究僅限于鋼筋混凝土柱的力學(xué)性能、 很少有研究含有FRP約束柱的鋼筋混凝土框架的力學(xué)性能在用玻璃鋼對鋼筋混凝土框架結(jié)構(gòu)進行抗震加固時,一個問題是框架結(jié)構(gòu)的應(yīng)力, 另外一個重要問題就是如何利用最少的材料及其用費達到所需的抗震性能. 從這兩個問題出發(fā), 本文討論基于抗震設(shè)計性能出發(fā)的用玻璃鋼外套加固鋼筋混凝土建筑物優(yōu)化技術(shù). 我們采取玻璃鋼外套厚度作為隔離柱設(shè)計變量 因此,體積最小、材料成本最低就是是優(yōu)化設(shè)計目標漂流的勸服是明確表示在使用的玻璃上漿變數(shù),虛功原理 泰勒級數(shù)的逼近.?最優(yōu)準則(OC)的辦法是采用非線性地震側(cè)移的設(shè)計問題. 本文通過實例介紹和討論,展示了該程序.關(guān)鍵詞:約束; 纖維增強聚合物(玻璃鋼); 性能化設(shè)計; pushover分析; 鋼筋混凝土; 抗震加固; 結(jié)構(gòu)優(yōu)化1介紹在重力荷載下按舊規(guī)范設(shè)計裝裱現(xiàn)有鋼筋混凝土(RC)結(jié)構(gòu)抗震性能或在最近的地震證明是不夠的,橫向承載能力有限,延性差1 這種結(jié)構(gòu)具有一種內(nèi)在的抵抗橫向載荷能力低,地震期間造成很大塑性變形而且,結(jié)構(gòu)特點是強梁弱柱, 導(dǎo)致在地面強烈震動脆性破壞或柱側(cè)向傾倒 2 。為了減少結(jié)構(gòu)在強震倒塌的風險, 這就迫切需要提升現(xiàn)有的鋼筋混凝土建筑物的抗震性能,以符合現(xiàn)行抗震設(shè)計規(guī)范. 鋼筋混凝土建筑物的抗震加固的缺陷可能涉及的地區(qū)加強針對性,增強實力 剛度和/或提高結(jié)構(gòu)延性、或提供多余承載機制. 一般來說,各種技巧可以結(jié)合運用在結(jié)構(gòu)的抗震加固. 具體加固改造策略選擇的目標應(yīng)該是基于經(jīng)濟考慮 1 加固設(shè)計應(yīng)以在指定震動下,確保沒有損壞超過確定的程度或建筑物沒有倒塌為適當?shù)臉藴? 另外,實施的費用是業(yè)主和工程師都十分關(guān)心的4 整個鋼筋混凝土框架抗震加固策略必須綜合考慮的一系列關(guān)鍵問題。這些問題包括加強橫梁, 柱和梁柱節(jié)點脆性破壞模式等, 用玻璃鋼補強外部或其他適當方式以防止象剪切破壞的脆性破壞。一旦這些脆性破壞模式確定了,進行抗震加固的設(shè)計以滿足地震強度要求,這取決于該柱下軸壓和彎曲下的承載力和延性。改造柱是最廣泛使用的提高鋼筋混凝土框架結(jié)構(gòu)抗震等級的辦法改善柱子的力學(xué)性能通常涉及提高其強度,韌性、剛度、在大多數(shù)情況綜合這些參數(shù). 改造柱子常規(guī)措施包括加裝鋪混凝土或鋼套管. 最近技術(shù)是利用纖維增強聚合物(玻璃鋼)外套來限制柱側(cè)向變形56 在這種外套, 纖維唯一或主要在法向約束混凝土,其抗壓 實力與最終壓應(yīng)變明顯提高 5、6、7. 傳統(tǒng)工藝相比,玻璃鋼套管容易和更快地實施幾乎不增加自重,對現(xiàn)行體制沖擊微小并且抗腐蝕. 結(jié)果,玻璃鋼套管已被發(fā)現(xiàn)比傳統(tǒng)技術(shù)是一個更具成本效益的方法,因而,在許多情況 被廣泛接受5、6和8. 用玻璃鋼限制鋼筋混凝土柱來對鋼筋混凝土框架結(jié)構(gòu)抗震加固, 除了加固結(jié)構(gòu)的應(yīng)力外、 一個重要問題就是如何利用最少的玻璃鋼材料達到所需的抗震等級. 這兩個問題出發(fā), 本文為優(yōu)化技術(shù)性能的抗震設(shè)計的鋼筋混凝土建筑物加裝玻璃鋼框. 玻璃鋼外套的厚度在柱加固設(shè)計視為變量, 而玻璃鋼的最總材料成本(即費用等方面,不包括交通)作為一個統(tǒng)一的延性需求的彈性設(shè)計目標優(yōu)化設(shè)計側(cè)移的過程. 2現(xiàn)有最優(yōu)的抗震設(shè)計傳統(tǒng)抗震設(shè)計方法對現(xiàn)有建筑抗震加固, 類似用傳統(tǒng)方法新結(jié)構(gòu)進行抗震設(shè)計, 都假設(shè)彈性結(jié)構(gòu)在甚至是嚴重地震下反應(yīng)是彈性的,9. 基于地震反應(yīng)的抗震設(shè)計,看來是抗震設(shè)計規(guī)范未來的發(fā)展方向, 直接指出在結(jié)構(gòu)在地震作用下彈性變形是非彈性的 3,9,10. 在評估框架結(jié)構(gòu)抗震性能的非線性后、 Pushover分析日益被接納作為性能化設(shè)計程序. Pushover分析是一個簡化的、靜態(tài)的、 非線性的分析,在這個過程中預(yù)定的地震載荷模式逐步加到向結(jié)構(gòu),直到塑料破壞機制形成,結(jié)構(gòu)崩潰. 這種方法采用理論分析,隨菏載不斷增加,裂縫隨塑性變化在框架構(gòu)件邊緣形成塑性鉸. 橫向側(cè)移性能是多層建筑一項重要指標,用來衡量不論在現(xiàn)有抗震設(shè)計方法還是當前的新發(fā)展表現(xiàn)為設(shè)計做法設(shè)計的建筑物結(jié)構(gòu)性和非結(jié)構(gòu)性部件損壞程度。 1,3,9,10和11. 考慮在橫向地震荷載下多層構(gòu)件彈性、非彈性變化對構(gòu)件進行經(jīng)濟設(shè)計是相當有難度的、具有挑戰(zhàn)性的任務(wù)12 橫向側(cè)移設(shè)計尤為艱巨,因為它需要考慮在嚴重的地震中適當分配各構(gòu)件剛度而,以及各構(gòu)件塑性內(nèi)力重分布. 在缺乏自動優(yōu)化技術(shù)情況下、 鋼筋的等級的數(shù)量是基于直覺和經(jīng)驗來設(shè)計的12. 需要一個優(yōu)化設(shè)計方法是顯而易見的, 過去數(shù)幾十年間動態(tài)結(jié)構(gòu)優(yōu)化一直積極研究的課題。12、 13、14、15、16、17、18. 近年來,許多研究已經(jīng)致力于專門的優(yōu)化性能設(shè)計方法. 尤其是成與鄒12, 鄒、鄒、陳1617和18提出了基于彈性、非彈性側(cè)移性能的鋼筋混凝土建筑物抗震設(shè)計優(yōu)化技術(shù). 他們發(fā)現(xiàn)自動優(yōu)化技術(shù)是用最價廉的設(shè)計實現(xiàn)了最佳抗震性能. .優(yōu)化現(xiàn)有結(jié)構(gòu)抗震加固設(shè)計的具體研究太有限了. 馬丁-拉、羅梅羅19提出一個簡單的解決方法,從而優(yōu)化了非線性粘性流體阻尼 改造框架地震彎矩.就作者所知,改造策略是用玻璃鋼外套限制隔離柱以對鋼筋混凝土結(jié)構(gòu)抗震加固,目前還沒有做過這方面優(yōu)化設(shè)計的研究. 目前, 用玻璃鋼限制隔離柱性能化改造鋼筋混凝土結(jié)構(gòu)設(shè)計只能基于主觀經(jīng)驗和大量運算工作的試錯法設(shè)計. 最后的設(shè)計可能過于保守, 改造費用昂貴造成不必要的干預(yù)和抗震性能比降低. 本文講述考慮側(cè)移性能對建筑物鋼筋混凝土框架抗震加固設(shè)計優(yōu)化技術(shù),填補了現(xiàn)有研究的一項空白.加固策略是基于用玻璃鋼限制柱的兩端, 即在塑性鉸潛在形成區(qū)域加固 20,21,22和23. 優(yōu)化設(shè)計過程是一個已從原先成和鄒12, 鄒、陳161718 制定的抗震設(shè)計體系適度修正而來的.3. 進一步的設(shè)計優(yōu)化問題圖1、所示. 玻璃鋼薄板用纖維圈從法向約束柱.Display Full Size version of this image (11K)圖1 ,柱抗震加固的玻璃鋼外套約束區(qū)域這項研究認為,一個鋼筋混凝土框架結(jié)構(gòu)潛在塑膠鉸(假定每一個構(gòu)件端部都存在一個鉸) Nc柱、Nb梁, 2(Nc+Nb) 假定柱截面是長方形,寬度Bi和高度Di.由玻璃鋼約束柱的潛在塑性鉸區(qū)而取得抗震加固效果,如圖. 1所示. 在這項研究中只有約束柱塑性鉸玻璃外套的厚度被作為設(shè)計變量. 這種方法是現(xiàn)實的,同時也降低了設(shè)計的管理規(guī)模. 外套所需的厚度首先滿足該構(gòu)件的抗剪承載力5、 但本文的優(yōu)化設(shè)計程序中都沒有討論這些厚度. 在實際執(zhí)行的抗震加固策略時,對任何一個柱子潛在的塑性鉸區(qū)玻璃鋼外套總厚度的應(yīng)該是3種失效模式分別需要厚度的總和, 5.鑒于現(xiàn)階段知識技術(shù)水平,這是一個保守而務(wù)實的考慮. 在優(yōu)化過程設(shè)計變量,是厚度ti、 即約束每個構(gòu)件塑性鉸的玻璃外套的厚度. 對于某一類玻璃鋼材料 如果拓撲結(jié)構(gòu)是預(yù)先假定的每柱子有同樣厚度的玻璃鋼外套而同樣長度的兩端約束區(qū)域, 用于約束柱玻璃鋼復(fù)合材料的總成本由下式給出:(1)其中wi為玻璃鋼復(fù)合材料成本系數(shù)、wi=4Lci(Bi+Di); 為單位體積的玻璃鋼復(fù)合材料的費用; Lc,是原來每個柱端部約束區(qū)域的長度,即最大的可能塑性鉸長度、0.5D和構(gòu)件長度12.5%中的較大值 521. 在實際執(zhí)行過程中, 與原先約束區(qū)域毗鄰的二級約束區(qū)也應(yīng)約束,但玻璃外套厚度減至原約束區(qū)的一半. 本文沒有進一步考慮二級約束區(qū)所需玻璃鋼材料費用金額. 附件2:外文原文Optimal performance-based design of FRP jackets for seismic retrofit of reinforced concrete framesAbstract External bonding of fiber-reinforced polymer (FRP) composites is now a well-established technique for the strengthening/retrofit of reinforced concrete (RC) structures. In particular, confinement of RC columns with FRP jackets has proven to be very effective in enhancing the strength and ductility of columns, and has become a key technique for the seismic retrofit of RC structures. Despite the large amount of research on the behavior of RC columns confined with FRP, little research has been conducted on the behavior of RC frames with FRP-confined columns. For the seismic retrofit of RC frames with FRP, apart from the structural response of a retrofitted frame, an important issue is how to deploy the least amount of the FRP material to achieve the required upgrade in seismic performance.With these two issues in mind, this paper presents an optimization technique for the performance-based seismic FRP retrofit design of RC building frames. The thicknesses of FRP jackets used for the confinement of columns are taken as the design variables, and minimizing the volume and hence the material cost of the FRP jackets is the design objective in the optimization procedure. The pushover drift is expressed explicitly in terms of the FRP sizing variables using the principle of virtual work and the Taylor series approximation. The optimality criteria (OC) approach is employed for finding the solution of the nonlinear seismic drift design problem. A numerical example is presented and discussed to demonstrate the effectiveness of the proposed procedure.Keywords: Confinement; Fiber-reinforced polymer (FRP); Performance-based design; Pushover analysis; Reinforced concrete; Seismic retrofit; Structural optimization 1. Introduction The seismic performance of existing reinforced concrete (RC) framed structures designed for gravity loads or according to old codes has proven to be poor during recent earthquakes, due to insufficient lateral load-carrying capacity and limited ductility 1. Such structures possess an inherently low resistance to horizontal loads, resulting in large inelastic deformations during earthquakes. Moreover, their structural behavior is of the weak column/strong beam type, which results in brittle soft-story or column sideway collapse mechanisms during strong ground motions 2. In order to reduce the risk of structural collapses during strong earthquakes, there is an urgent need to upgrade existing RC buildings to meet the requirements of current seismic design codes. The seismic retrofit of an RC building may involve targeted strengthening of deficient regions, to increase the strength, stiffness and/or ductility of the structure, or to provide redundant load-carrying mechanisms. In general, a combination of different techniques may be employed in the seismic retrofit of a structure. The selection of a specific retrofit strategy should be based on the retrofit objectives as well as on economic considerations 1. The retrofit design should be based on appropriate performance criteria to ensure that a defined level of damage is not exceeded or the collapse of the building is prevented during specified ground motions 3. In addition, the cost of implementation is of great concern to both building owners and practicing engineers 4. The overall seismic retrofit strategy for an RC frame must consider a number of key issues in an integrated manner; these issues include the strengthening of beams, columns and beam-column joints to prevent brittle failure modes such as shear failure to become critical using external FRP reinforcement or other appropriate methods。Once these brittle failure modes are suppressed, the seismic retrofit design to enable the frame to satisfy specific demands of an earthquake depends on the strength and ductility of the columns under combined axial compression and bending. Retrofit of the columns is one of the most widely used seismic upgrading approaches for RC frames,Improving the column behavior typically involves increasing its strength, ductility, stiffness or in most cases a combination of these parameters. Conventional retrofit measures for columns include RC overlays or steel jacketing. A more recent technique is the use of fiber-reinforced polymer (FRP) jackets to confine columns 5 and 6. In such jackets, the fibers are oriented only or predominantly in the hoop direction to confine the concrete so that both its compressive strength and ultimate compressive strain are significantly enhanced 5, 6 and 7. Compared to conventional techniques, FRP jacketing is easier and quicker to implement, adds virtually no weight to the existing structure, has minimal aesthetic impact and is corrosion-resistant. As a result, FRP jacketing has been found to be a more cost-effective solution than conventional techniques in many situations and has thus been widely accepted 5, 6 and 8. For the seismic retrofit of RC frames employing FRP confinement of RC columns, apart from the structural response of a retrofitted frame, an important issue is how to deploy the least amount of the FRP material to achieve the required upgrade in seismic performance. With these two issues in mind, this paper presents an optimization technique for the performance-based seismic FRP retrofit design of RC building frames. The thicknesses of FRP jackets in the columns are considered as the design variables, while the least total material cost (i.e. costs associated with other aspects such as transportation are not included) of FRP and a uniform ductility demand are taken as design objectives of the inelastic drift design optimization process.2. Existing work on optimal performanced-based seismic designTraditional design approaches for seismic retrofit, similar to traditional approaches for seismic design of new structures, assume that structures respond elastically even to severe earthquakes 9. Performance-based seismic design, which appears to be the future direction of seismic design codes, directly addresses inelastic deformations induced in structures by earthquakes 3, 9 and 10.In assessing the nonlinear seismic behavior of framed structures, pushover analysis has been increasingly accepted as part of the performance-based design procedure. Pushover analysis is a simplified, static, nonlinear procedure in which a predefined pattern of earthquake loads is applied incrementally to the structure until a plastic collapse mechanism is reached. This method of analysis generally adopts a lumped-plasticity approach that tracks the spreading of inelasticity through the formation of plastic hinges at the ends of the frame elements during the incremental loading process. The lateral drift performance of a multi-story building is an important indicator that measures the level of damage to the structural and non-structural components of a building in current seismic design approaches and also in the newly developed performance-based design approach 1, 3, 9, 10 and 11. The economic design of structural elements for various levels of elastic and inelastic lateral drift performance under multiple levels of earthquake loads is generally a rather difficult and challenging task 12. Lateral drift design is particularly challenging as it requires the consideration of an appropriate stiffness distribution of all structural elements and, in a severe seismic event, also the occurrence and redistribution of plasticity in the elements. Structural engineers are thus faced with the problem of efficiently distributing materials throughout the structure to optimize the elastic and inelastic drift responses of structures. In absence of an automated optimization technique, sizes of members and amounts of steel reinforcement are designed by trial-and-error methods based on intuition and experience 12. The need for an optimal design approach is thus clear, and structural optimization of dynamically excited structures has been an active research topic for the past few decades 12, 13, 14, 15, 16, 17 and 18 In recent years, much research has been devoted to the optimization of the emerging performance-based design approach. In particular, Chan and Zou 12, Zou 16 and Zou and Chan 17 and 18 proposed an optimization technique for elastic and inelastic drift performance-based seismic design of RC buildings. They showed that an automated optimization technique is capable of achieving the best seismic drift performance combined with the least expensive design. Specific research on the optimization of seismic retrofit design of existing structures has been much more limited. Martinez-Rodrigo and Romero 19 proposed a simple methodology leading to an optimal solution with nonlinear viscous fluid dampers for the seismic retrofit of momentresisting frames. To the best of the authors knowledge, no research has been conducted on the optimization of seismic retrofit design of RC structures when the retrofit strategy is the confinement of columns with FRP jackets. At the present, the performance-based retrofit design of RC structures with FRP confinement of columns can only be conducted by trial-and-error methods based on subjective experience and much computational effort. The final design may be overly conservative, resulting in an unnecessarily expensive retrofit intervention and less than optimal seismic performance. The optimization technique for the drift performance-based seismic retrofit design of framed RC buildings presented in this paper therefore fills a significant gap in existing research. The retrofit strategy is based on the FRP confinement of columns at the two ends, i.e. in the regions of potential plastic hinge formation 20, 21, 22 and 23. The optimal design procedure is one that has been appropriately modified from that previously developed by Chan and Zou 12, Zou 16 and Zou and Chan 17 and 18 for the seismic design of new structures.3. Optimal seismic retrofit design problem3.1. Implicit design optimization problemAs shown in Fig. 1, FRP sheets for confinement of columns are wrapped around columns with the fibers oriented in the hoop direction. The consequent increases in the axial compressive strength and the ultimate axial strain of the concrete core depend on several factors, including the thickness, tensile strength and elastic modulus of the confining FRP jacket, unconfined concrete strength and cross-sectional shape of the column 7. For given material properties and cross-sectional dimensions, the thickness of the FRP jacket governs the strength and ductility of the confined cross-section.Display Full Size version of this image (11K)Fig. 1.FRP-jacketed regions of column for seismic retrofit.This study considers an RC framed structure with Nc columns, Nb beams, and hence 2(Nc+Nb) potential plastic hinges (assuming one hinge at each end of each member). The column is assumed to have a rectangular cross-section, with width Bi and depth Di. Seismic retrofit is achieved with FRP confinement of the potential plastic hinge regions of each column, as shown in Fig. 1. Only the thicknesses of the FRP jackets required for confinement of the plastic hinges are considered as design variables in this study.This approach is realistic and also reduces the design problem to a manageable size. The jacket thicknesses required for shear resistance and for confinement of lap splices are first calculated for each member 5, but these thicknesses are not taken into account in the optimal design procedure presented in this paper. In practical implementation of the seismic retrofit strategy, for any potential plastic hinge region in a column, the total thickness of the FRP jacket should be the sum of those determined for the three failure modes, respectively 5. This represents a conservative but realistic approach given the current stage of knowledge. The design variables in the optimization process are therefore the thicknesses, ti, of the FRP jackets required for confinement of the plastic hinges in each member. For a given type of FRP material, if the topology of the structure is predefined and each column is assumed to have the same FRP jacket thickness and the same length of the confined region at both ends, the total material cost of the FRP composite used for column confinement is given by(1)where wi is the cost coefficient for the FRP composite, wi=4Lci(Bi+Di); is the cost per unit volume of the FRP composite; and Lci is the length of the primary confinement region at each end of the ith column, which should be the largest of the plastic hinge length, 0.5D and 12.5% of member length 5 and 21. In practical implementation, a secondary confinement region adjacent to the primary confinement region should also be confined but with the FRP jacket thickness reduced to half of that in the primary confinement region. The amount of FRP required for confining the secondary confinement region is not further considered in this paper.身體里的“樂隊”教學(xué)目的:1知道身體里的器官在運動,會發(fā)出聲音。2了解身體里主要器官的位置和作用。3聽身體里器官的聲音和認識它們的形狀。教學(xué)過程:一、導(dǎo)入1孩子們,當你生病去醫(yī)院時,醫(yī)生總會用聽診器在你的胸口或腹部聽,你知道醫(yī)生在聽什么嗎?2指名說說。3師小結(jié):對啊,醫(yī)生在聽你身體里器官發(fā)生的聲音呢!那里知道身體里為什么會有聲音嗎?(揭題)二、新授1看書P12,說說身體里為什么有聲音?2指名回答。3師:原來身體里的各種器官在運動,它們就像“樂隊”在“合奏”,心臟跳動的聲音像打鼓,肺呼吸的聲音像拉手風琴,胃的聲音像吹牛角咕嚕咕嚕的4你知道心臟在身體的哪個部位嗎?師示范摸摸心臟的拉置左胸,生用手摸一摸。5心臟有什么作用呢?讀P2。6我們身體里還有一個器官專用來呼吸,它就是什么(肺),你知道它的位置嗎?它有什么作用呢?師介紹肺的位置,生讀書了解肺的作用。7我們每天都要吃許多食物,你知道食物是靠哪些器官消化的嗎(腸胃),胃的位置在身體的哪個部位?腸的位置呢?腸胃有什么作用呢?看P2圖文,了解胃、腸的位置,并在身體上摸一摸。8同桌孩子互相摸摸對方的心臟、肺、和胃。三、鞏固P31在右圖身體的相應(yīng)位置畫出心臟、肺和胃。生動手畫老師評講,畫示意圖,糾錯2課后作業(yè)跑完步,聽聽心臟的“鼓聲”?;ハ嗦犅牷蝈e用聽診器聽聽腸胃的“音樂”。感知世界教學(xué)目的:1知道我們是如何感知這個世界的。2了解視覺、聽覺、嗅覺、味覺和觸覺是怎樣感知的。3了解人類的感覺能力是有限的,是如何借助工具超越自身的感覺能力的。教學(xué)過程:一、導(dǎo)入:1讀一首小詩晚安。在寧靜的夜晚,媽媽搖著親愛的寶寶,與月亮、樹影、夜空、花香、風、小鐘道晚安,你知道我們是如何看到美麗的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務(wù)會計與管理知識實訓(xùn)分析教程
- 設(shè)備工作計劃
- 2009年資產(chǎn)評估師-財務(wù)會計測驗試題分章練
- 從資源整合角度解析體能訓(xùn)練行業(yè)的連鎖加盟模式
- 2025年Android中高級面試必知必會講的明明白白!-備戰(zhàn)2025,android中高級面試必知必會
- 建筑施工特種作業(yè)-建筑架子工附著式腳手架真題庫-1
- 閏土的題目及答案
- 2023年學(xué)業(yè)水平合格考試三年分類匯編(真題)-專題一宇宙中的地球02太陽對地球的影響
- 11 2 成對數(shù)據(jù)的統(tǒng)計分析-高考數(shù)學(xué)真題分類 十年高考
- 新疆且末縣堯勒薩依金礦開采項目環(huán)評報告
- 融資專員測試題及答案
- 河北秦皇島事業(yè)單位招聘中小學(xué)教師類D類考試模擬題帶答案2024年
- T-ZZB 2218-2021 燃氣用具脈沖點火器
- 好讀書讀好書課件
- 以科技創(chuàng)新為導(dǎo)向的醫(yī)療人才培養(yǎng)計劃
- 《中華人民共和國公務(wù)員法概述》課件
- 2025年ASQ質(zhì)量經(jīng)理(CMQ.OE)認證考試練習(xí)題庫(350題)
- 裝修驗房合同協(xié)議
- 專業(yè)市場營銷咨詢服務(wù)合同
- 企業(yè)信息管理制度
- 2025屆湖南省邵陽市邵東縣中考生物押題卷含解析
評論
0/150
提交評論