




已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
#層次聚類Data=iris,-5;Means=sapply(data,mean);SD=sapply(data,sd);dataScale=scale(data,center=means,scale=SD);Dist=dist(dataScale,method=”euclidean”);heatmap(as.matrix(Dist),labRow=FALSE,labCol=FALSE);clusteModel=hclust(Dist,method=”ward”);result=cutree(clusteModel,k=3);table(iris,5,result);plot(clusteModel);library(fastcluster); # kuaisu cengcijuleiclusteModel=hclust(Dist,method=”ward”);library(proxy);res=dist(data,method=”cosine”);x=c(0,0,1,1,1,1);y=c(1,0,1,1,0,1);dist(rbind(x,y),method=”Jaccard”);x=c(0,0,1.2,1,0.5,1,NA);y=c(1,0,2.3,1,0.9,1,1);d=abs(x-y);Dist=sum(d!is.na(d)/6;# k-means聚類clusteModel=kmeans(dataScale,centers=3,nstart=10);class(clusteModel);library(proxy);library(cluster);clustModel=pam(dataScale,k=3,metric=”Mahalanobis”);clustModel$medoidstable(iris$Species,clustModel$clustering);par(mfcol=c(1,2);plot(clustModel,which.plots=2,main=”);Plot(clustModel,which.plots=1,main=”);library(devtools);install_github(“l(fā)ijian13/rinds”);rinds:bestCluster(dataScale,2:6);library(fpc);pka=kmeansruns(iris,1:4,krange=2:6,critout=TRUE,runs=2,criterion=”asw”);#基于密度的聚類x1=seq(0,pi,lenth.out=100);y1=sin(x1)+0.1*rnorm(100);x2=1.5+seq(0,pi,length.out=100);y2=cos(x2)+0.1*rnorm(100);data=data.frame(c(x1,x2),c(y1,y2);names(data)=c(“x”,”y”);model1=kmeans(data,centers=2,nstart=10);library(“fpc”);model2=dbscan(data,eps=0.3,MinPts=4);#自組織映射library(kohonen);data=as.matrix(iris,-5);somModel=som(data,grid=somgrid(15,10,”hexagonal”);plot(somModel,ncolors=10,type=”dist.neighbours”);irisclass=as.numeric(iris,5);plot(somModel,type=”mapping”,labels=irisclass,col=irisclass+3,main=”mapping plot”);#主成分分析library(FactoMineR);data(decathlon);head(decathlon,n=2);pca1=princomp(decathlon,1:10);plot(pca1,type=line);res.pca=PCA(decathlon,quanti.sup=11:12,quali.sup=13);#對應分析library(MASS);data(caith);biplot(corresp(caith,nf=2),xlim=c(-0.6,0.8);#多元分析的可視化library(car);data(mpg,package=ggplot2);scatterplotMatrix(mpg,c(displ,cty,hwy),diagonal=histogram,ellipse=TRUE);library(corrplot);data(mtcars);M=cor(mtcars);corrplot(M,order=hclust);#Logistic回歸set.seed(1);b0=1;b1=2;b2=3;x1=rnorm(1000);x2=rnorm(1000);z=b0+b1*x1+b2*x2;pr=1/(1+exp(-z);y=rbinom(1000,1,pr);plotdata2=data.frame(x1,x2,y=factor(y);library(ggplot2);p2=ggplot(data=plotdata2,aes(x=x1,y=x2,color=y)+geom_point();print(p2);data=data.frame(x1,x2,y);model=glm(y.,data=data,family=binomial);summary(model);w=model$coef;inter=-w1/w3;slope=-w2/w3;plotdata3=data.frame(cbind(x1,x2),y=factor(y);p3=ggplot(data=plotdata3,aes(x=x1,y=x2,color=y)+geom_point()+geom_abline(intercept=inter,slope=slope);print(p3);predict(model,newdata=list(x1=1,x2=3),type=response);#復雜網(wǎng)絡snafile=system.file(examples,sna,lijian001.txt,package=rinds);snadf=read.table(snafile,header=FALSE,stringsAsFactors=FALSE);head(snadf)library(igraph);snaobj=graph.data.frame(snadf,directed=FALSE);class(snaobj)vcount(snaobj);ecount(snaobj);neighbors(snaobj,6,mode=all);degree(snaobj,v=6);betweenness(snaobj,v=6,directed=FALSE);closeness(snaobj,v=6);page.rank(snaobj,vids=6);similarity.dice(snaobj,vids=c(6,7);snaclass=munity(snaobj,steps=5);cl=snaclass$membership;V(snaobj)$color=rainbow(max(cl)cl;V(snaobj)$bte=betweenness(snaobj,directed=FALSE);V(snaobj)$size=5;V(snaobj)bte=1800$size=15;V(snaobj)$label=NA;V(snaobj)bte=1800$label= V(snaobj)bte=1800$name;plot(snaobj,layout=layout.fruchterman.reingold,vertex.size= V(snaobj)$size,vertex.color= V(snaobj)$color,vertex.label= V(snaobj)$label,vertex.label.cex= V(snaobj)$cex,edge.color=grey(0.5),edge.arrow.mode=-);用caret包對數(shù)據(jù)清洗并進行回歸樹預測set.seed(1)data(PimaIndiansDiabetes2,package=mlbench)data=PimaIndiansDiabetes2library(caret)library(caret)preProcValues=preProcess(data,-9,method=c(center,scale)scaleddata=predict(preProcValues,data,-9)preProcbox=preProcess(scaleddata,method=c(YeoJohnson)boxdata=predict(preProcbox,scaleddata)preProcimp=preProcess(boxdata,method=bagImpute)procdata=predict(preProcimp,boxdata)procdata$class=data,9library(rpart)rpartModel=rpart(class.,data=procdata,control=rpart.control(cp=0)cptable=as.data.frame(rpartModel$cptable)cptable$errsd=cptable$xerror+cptable$xstdcpvalue=cptablewhich.min(cptable$errsd),CPpruneModel=prune(rpartModel,cpvalue)library(rpart.plot)rpart.plot(pruneModel)pre=predict(pruneModel,procdata,type=class)preTable=table(pre,procdata$class)accuracy=sum(diag(preTable)/sum(preTable)write.table(iris,file=C:/Program Files/R/zhangfuchang.csv,sep=,)data=read.table(file=C:/Program Files/R/zhangfuchang.csv,sep=,)write.table(procdata,file=C:/Program Files/R/zhangfuchang.csv,sep=,)procdata=read.table(file=C:/Program Files/R/zhangfuchang.csv,sep=,)回歸樹回歸代碼rpartModel=rpart(class.,data=procdata,control=rpart.control(cp=0.01),parms=list(loss=matrix(c(0,5,1,0),2)pre=predict(rpartModel,procdata,type=class)preTable=table(pre,procdata$class)accuracy=sum(diag(preTable)/sum(preTable)用分類回歸數(shù)分類,并用10重交叉驗證的R代碼procdata=read.table(file=C:/Program Files/R/zhangfuchang.csv,sep=,)num=sample(1:10,nrow(procdata),replace=TRUE)res=array(0,dim=c(2,2,10)n=ncol(procdata)for (i in 1:10)train=procdatanum!=i,test=procdatanum=i,model=rpart(class.,data=train,control=rpart.control(cp=0.1)pre=predict(model,test,-n,type=class)res,i=as.matrix(table(pre,test,n)table=apply(res,MARGIN=c(1,2),sum)sum(diag(table)/sum(table)貝葉斯分類library(MASS)library(klaR)nbModel=NaiveBayes(class.,data=procdata,usekernel=FALSE,fL=1)plot(nbModel,vars=glucose,legendplot=TRUE)plot(nbModel,vars=pressure,legendplot=TRUE)支持向量機分類library(devtools)install_github(lijian13/rinds)library(rinds)data(LMdata,package=rinds)library(kernlab)model=ksvm(y.,data=LMdata$SVM,kernel=rbfdot,C=1)plot(model,data=LMdata$SVM)用caret包中的train函數(shù)分別進行回歸樹、貝葉斯分類、最近鄰分類、神經(jīng)網(wǎng)絡分類、支持向量機分類、隨即森林分類回歸樹:library(caret)library(caret)library(e1071)fitControl=trainControl(method=repeatedcv,number=10,repeats=3)tunedf=data.frame(.cp=seq(0.001,0.1,length=10)treemodel=train(x=procdata,-9,y=procdata,9,method=rpart,trControl=fitControl,tuneGrid=tunedf)plot(treemodel)貝葉斯:library(klaR)library(caret)fitControl=trainControl(method=repeatedcv,number=10,repeats=3)tunedf=data.frame(.fL=1,.usekernel=TRUE)nbmodel=train(x=procdata,-9,y=procdata,9,method=nb,trControl=fitControl,tuneGrid=tunedf)densityplot(nbmodel)最近鄰:library(caret)fitControl=trainControl(method=repeatedcv,number=10,repeats=3)tunedf=data.frame(.k=seq(3,20,by=2)knnmodel=train(x=procdata,-9,y=procdata,9,method=knn,trControl=fitControl,tuneGrid=tunedf)plot(knnmodel)神經(jīng)網(wǎng)絡:library(caret)library(nnet)fitControl=trainControl(method=repeatedcv,number=10,repeats=3)tunedf=expand.grid(.decay=0.1,.size=5:10,.bag=TRUE)nnetmodel=train(class.,data=procdata,method=avNNet,trControl=fitControl,trace=FALSE,linout=FALSE,tuneGrid=tunedf)plot(nnetmodel)支持向量機library(caret)library(kernlab)fitControl=trainControl(method=repeatedcv,number=10,repeats=3)tunedf=data.frame(.C=seq(0,1,length=11)svmmodel=train(class.,data=procdata,method=svmRadialCost,trControl=fitControl,tuneGrid=tunedf)plot(svmmodel)隨即森林:library(caret)library(randomForest)fitControl=trainControl(method=repeatedcv,number=10,repeats=3)rfmodel=train(class.,data=procdata,method=rf,trControl=fitControl,tuneLength=5)plot(rfmodel)varImpPlot(rfmodel$finalModel)partialPlot(rfmodel$finalModel,procdata,-9,mass,which.class=pos)importance(rfmodel$finalModel)rm(list=ls()x=rnorm(1e4)*2+6y=0.5*x+1y=y+rnorm(length(y)smoothScatter(x,y)model=lm(yx)abline(model,lwd=2)text(1,8,R2=0.XXXX)R語言作單樣本的Wilcoxon秩和檢驗:x=c(4.12,5.81,7.63,9.74,10.39,11.92,12.32,12.89,13.54,14.45)wilcox.test(x-8,alt=greater)R語言作成對樣本的Wilcoxon秩和檢驗:algae=read.table(Analysis.txt,header=F,dec=.,s=c(season,size,speed,mxPH,mnO2,Cl,NO3,NH4,oPO4,PO4,Chla,a1,a2,a3,a4,a5,a6,a7),na.strings=c(XXXXXXX)library(DMwR)data(algae)找出那些樣本含有NA algae!complete.cases(algae),求出含有NA的樣本總個數(shù) nrow(algae!complete.cases(algae),)剔除含有NA的所有樣本 algae=na.o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小米小米電視發(fā)布會
- 學考計算機試題及答案
- 個性化私人飛行駕駛技能提升及職業(yè)規(guī)劃協(xié)議
- 新消防車測試題及答案
- 婚生子女撫養(yǎng)權歸屬、監(jiān)護責任及探望權調解協(xié)議
- 生物技術研發(fā)實驗室共建與市場推廣合作合同
- 影視作品授權制作同名主題公園住宿服務合同
- 汽車維修服務合同價款支付保證協(xié)議
- 同聲傳譯合同生效補充協(xié)議
- 國際商標注冊及全球維權服務協(xié)議
- 企業(yè)間無償借款合同模板
- 財務管理實務(浙江廣廈建設職業(yè)技術大學)知到智慧樹章節(jié)答案
- 2022-2023學年廣東省東莞市高一(下)期末地理試卷
- 酒店食品安全知識培訓
- 生活水泵房管理制度
- 初三班級學生中考加油家長會課件
- 市人民法院公開招考審判輔助人員考試題及答案
- 幼兒園 中班語言繪本《章魚先生賣雨傘》
- 提高混淆效果研究
- 烹飪專業(yè)考評員培訓
- 圍手術期患者低溫防治專家共識(2023版)解讀課件
評論
0/150
提交評論