數(shù)學(xué)北師大版八年級下冊直角三角形性質(zhì).doc_第1頁
數(shù)學(xué)北師大版八年級下冊直角三角形性質(zhì).doc_第2頁
數(shù)學(xué)北師大版八年級下冊直角三角形性質(zhì).doc_第3頁
數(shù)學(xué)北師大版八年級下冊直角三角形性質(zhì).doc_第4頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北師大版8年級下冊第1章第2節(jié)直角三角形(2)教案一、教學(xué)目標:1知識目標:能夠證明直角三角形全等的“HL”的判定定理,進一步理解證明的必要性利用“HL定理解決實際問題2能力目標:進一步掌握推理證明的方法,發(fā)展演繹推理能力二、教學(xué)過程分析本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)提問;第二環(huán)節(jié):引入新課;第三環(huán)節(jié):做一做;第四環(huán)節(jié):議一議;第五環(huán)節(jié):課時小結(jié);第六環(huán)節(jié):課后作業(yè)。1:復(fù)習(xí)提問1.判斷兩個三角形全等的方法有哪幾種?2.已知一條邊和斜邊,求作一個直角三角形。想一想,怎么畫?同學(xué)們相互交流。3、有兩邊及其中一邊的對角對應(yīng)相等的兩個三角形全等嗎?如果其中一個角是直角呢?請證明你的結(jié)論。我們曾從折紙的過程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運用公理,證明三角形全等,從而得出“等邊對等角”。那么我們能否通過作等腰三角形底邊的高來證明“等邊對等角”要求學(xué)生完成,一位學(xué)生的過程如下:已知:在ABC中, AB=AC求證:B=C證明:過A作ADBC,垂足為C,ADB=ADC=90又AB=AC,AD=AD,ABDACDB=C(全等三角形的對應(yīng)角相等)在實際的教學(xué)過程中,有學(xué)生對上述證明方法產(chǎn)生了質(zhì)疑。質(zhì)疑點在于“在證明ABDACD時,用了“兩邊及其中一邊的對角對相等的兩個三角形全等”而我們在前面學(xué)習(xí)全等的時候知道,兩個三角形,如果有兩邊及其一邊的對角相等,這兩個三角形是不一定全等的可以畫圖說明(如圖所示在ABD和ABC中,AB=AB,B=B,AC=AD,但ABD與ABC不全等)”也有學(xué)生認同上述的證明。教師順水推舟,詢問能否證明:“在兩個直角三角形中,直角所對的邊即斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等”,從而引入新課。2:引入新課(1)“HL”定理由師生共析完成已知:在RtABC和RtABC中,C=C=90,AB=AB,BC=BC求證:RtABCRtABC證明:在RtABC中,AC=AB2一BC2(勾股定理)又在Rt A B C中,A C =AC=AB2一BC2 (勾股定理)AB=AB,BC=BC,AC=ACRtABCRtABC (SSS)教師用多媒體演示:定理斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等這一定理可以簡單地用“斜邊、直角邊”或“HL”表示從而肯定了第一位同學(xué)通過作底邊的高證明兩個三角形全等,從而得到“等邊對等角”的證法是正確的練習(xí):判斷下列命題的真假,并說明理由:(1)兩個銳角對應(yīng)相等的兩個直角三角形全等;(2)斜邊及一銳角對應(yīng)相等的兩個直角三角形全等;(3)兩條直角邊對應(yīng)相等的兩個直角三角形全等;(4)一條直角邊和另一條直角邊上的中線對應(yīng)相等的兩個直角三角形全等對于(1)、(2)、(3)一般可順利通過,這里教師將講解的重心放在了問題(4),學(xué)生感覺是真命題,一時有無法直接利用已知的定理支持,教師引導(dǎo)學(xué)生證明已知:RABC和RtAB C,C=C=90,BC=BC,BD、BD分別是AC、AC邊上的中線且BDBD (如圖)求證:RtABCRtABC證明:在RtBDC和RtBDC中,BD=BD,BC=BC,RtBDCRtB D C (HL定理)CD=CD又AC=2CD,A C =2C D ,AC=AC在RtABC和RtA B C 中,BC=BC ,C=C =90,AC=AC ,RtABCCORtABC(SAS)通過上述師生共同活動,學(xué)生板書推理過程之后可發(fā)動學(xué)生去糾錯,教師最后再總結(jié)。3:做一做問題你能用三角尺平分一個已知角嗎? 請同學(xué)們用手中的三角尺操作完成,并在小組內(nèi)交流,用自己的語言清楚表達自己的想法(設(shè)計做一做的目的為了讓學(xué)生體會數(shù)學(xué)結(jié)論在實際中的應(yīng)用,教學(xué)中就要求學(xué)生能用數(shù)學(xué)的語言清楚地表達自己的想法,并能按要求將推理證明過程寫出來。)4:議一議如圖,已知ACB=BDA=90,要使ACBBDA,還需要什么條件?把它們分別寫出來這是一個開放性問題,答案不唯一,需要我們靈活地運用公理和已學(xué)過的定理,觀察圖形,積極思考,并在獨立思考的基礎(chǔ)上,通過同學(xué)之間的交流,獲得各種不同的答案(教師一定要提供時間和空間,讓同學(xué)們認真思考,勇于向困難提出挑戰(zhàn))5:例題學(xué)習(xí)如圖,在ABCABC中,CD,CD分別分別是高,并且ACAC,CD=CDACB=ACB求證:ABCABC分析:要證ABCABC,由已知中找到條件:一組邊AC=AC,一組角ACB=ACB如果尋求A=A,就可用ASA證明全等;也可以尋求么B=B,這樣就有AAS;還可尋求BC=BC,那么就可根據(jù)SAS注意到題目中,通有CD、CD是三角形的高,CD=CD觀察圖形,這里有三對三角形應(yīng)該是全等的,且題目中具備了HL定理的條件,可證的RtADCRtADC,因此證明A=A 就可行證明:CD、CD分別是ABCABC的高(已知),ADC=ADC=90在RtADC和RtADC中,AC=AC(已知),CD=CD (已知),RtADCRtADC (HL)A=A,(全等三角形的對應(yīng)角相等)在ABC和ABC中,A=A (已證),AC=AC (已知),ACB=ACB (已知),ABCABC (ASA)6:課時小結(jié)本節(jié)課我們討論了在一般三角形中兩邊及其一邊對角對應(yīng)相等的兩個三角形不一定全等而當一邊的對角是直角時,這兩個三角形是全等的,從而得出判定直角三角形全等的特殊方法HL定理,并用此定理安排了一系列具體的、開放性的問題,不僅進一步掌握了推理證明的方法,而且發(fā)展了同學(xué)們演繹推理的能力同學(xué)們這一節(jié)課的表現(xiàn),很值得繼續(xù)發(fā)揚廣大7:課后作業(yè)習(xí)題16第3、4、5題三、教學(xué)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論