已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第二講 函數(shù)概念與表示備注:【高三數(shù)學(xué)一輪復(fù)習(xí)必備精品共42講 全部免費(fèi) 歡迎下載】一【課標(biāo)要求】1通過豐富實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域 和值域;了解映射的概念;2在實(shí)際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D象法、列表法、解析法)表示函數(shù);3通過具體實(shí)例,了解簡單的分段函數(shù),并能簡單應(yīng)用;4通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的含義;5學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)二【命題走向】函數(shù)是整個高中數(shù)學(xué)的重點(diǎn),其中函數(shù)思想是最重要的數(shù)學(xué)思想方法,函數(shù)問題在歷年的高考中都占據(jù)相當(dāng)大的比例。從近幾年來看,對本部分內(nèi)容的考察形勢穩(wěn)中求變,向著更靈活的的方向發(fā)展,對于函數(shù)的概念及表示多以下面的形式出現(xiàn):通過具體問題(幾何問題、實(shí)際應(yīng)用題)找出變量間的函數(shù)關(guān)系,再求出函數(shù)的定義域、值域,進(jìn)而研究函數(shù)性質(zhì),尋求問題的結(jié)果。高考對函數(shù)概念與表示考察是以選擇或填空為主,以解答題形式出現(xiàn)的可能性相對較小,本節(jié)知識作為工具和其他知識結(jié)合起來命題的可能性依然很大預(yù)測2010年高考對本節(jié)的考察是:1題型是1個選擇和一個填空;2熱點(diǎn)是函數(shù)概念及函數(shù)的工具作用,以中等難度、題型新穎的試題綜合考察函數(shù)成為新的熱點(diǎn)。三【要點(diǎn)精講】1函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個函數(shù)。記作:y=f(x),xA。其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域。注意:(1)“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;(2)函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x2構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域(1)解決一切函數(shù)問題必須認(rèn)真確定該函數(shù)的定義域,函數(shù)的定義域包含三種形式:自然型:指函數(shù)的解析式有意義的自變量x的取值范圍(如:分式函數(shù)的分母不為零,偶次根式函數(shù)的被開方數(shù)為非負(fù)數(shù),對數(shù)函數(shù)的真數(shù)為正數(shù),等等);限制型:指命題的條件或人為對自變量x的限制,這是函數(shù)學(xué)習(xí)中重點(diǎn),往往也是難點(diǎn),因?yàn)橛袝r這種限制比較隱蔽,容易犯錯誤;實(shí)際型:解決函數(shù)的綜合問題與應(yīng)用問題時,應(yīng)認(rèn)真考察自變量x的實(shí)際意義。(2)求函數(shù)的值域是比較困難的數(shù)學(xué)問題,中學(xué)數(shù)學(xué)要求能用初等方法求一些簡單函數(shù)的值域問題配方法(將函數(shù)轉(zhuǎn)化為二次函數(shù));判別式法(將函數(shù)轉(zhuǎn)化為二次方程);不等式法(運(yùn)用不等式的各種性質(zhì));函數(shù)法(運(yùn)用基本函數(shù)性質(zhì),或抓住函數(shù)的單調(diào)性、函數(shù)圖象等)。3兩個函數(shù)的相等:函數(shù)的定義含有三個要素,即定義域A、值域C和對應(yīng)法則f。當(dāng)函數(shù)的定義域及從定義域到值域的對應(yīng)法則確定之后,函數(shù)的值域也就隨之確定。因此,定義域和對應(yīng)法則為函數(shù)的兩個基本條件,當(dāng)且僅當(dāng)兩個函數(shù)的定義域和對應(yīng)法則都分別相同時,這兩個函數(shù)才是同一個函數(shù)。4區(qū)間(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示5映射的概念一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意 一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f:AB”。函數(shù)是建立在兩個非空數(shù)集間的一種對應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應(yīng)關(guān)系,這種的對應(yīng)就叫映射。注意:(1)這兩個集合有先后順序,A到B的映射與B到A的映射是截然不同的其中f表示具體的對應(yīng)法則,可以用漢字?jǐn)⑹觥#?)“都有唯一”什么意思?包含兩層意思:一是必有一個;二是只有一個,也就是說有且只有一個的意思6常用的函數(shù)表示法(1)解析法:就是把兩個變量的函數(shù)關(guān)系,用一個等式來表示,這個等式叫做函數(shù)的解析表達(dá)式,簡稱解析式;(2)列表法:就是列出表格來表示兩個變量的函數(shù)關(guān)系;(3)圖象法:就是用函數(shù)圖象表示兩個變量之間的關(guān)系7分段函數(shù)若一個函數(shù)的定義域分成了若干個子區(qū)間,而每個子區(qū)間的解析式不同,這種函數(shù)又稱分段函數(shù);8復(fù)合函數(shù)若y=f(u),u=g(x),x(a,b),u(m,n),那么y=fg(x)稱為復(fù)合函數(shù),u稱為中間變量,它的取值范圍是g(x)的值域四【典例解析】題型1:函數(shù)概念例121.(2009天津卷文)設(shè)函數(shù)則不等式的解集是( )A. B. C. D.答案 A解析 由已知,函數(shù)先增后減再增當(dāng),令解得。當(dāng),故 ,解得【考點(diǎn)定位】本試題考查分段函數(shù)的單調(diào)性問題的運(yùn)用。以及一元二次不等式的求解(2)江蘇省如皋中學(xué)20072008學(xué)年度第二學(xué)期階段考試高三數(shù)學(xué)(理科)請設(shè)計一個同時滿足下列兩個條件的函數(shù)y = f (x):圖象關(guān)于y軸對稱;對定義域內(nèi)任意不同兩點(diǎn), 都有答: . 答案不唯一,在定義域內(nèi)圖象上凸的偶函數(shù)均可,如等等.首先由知f (x)為偶函數(shù),由知f (x)在定義域內(nèi)圖象上凸,然后在基本初等函數(shù)中去尋找符合這兩點(diǎn)的模型函數(shù)【總結(jié)點(diǎn)評】本題主要考查函數(shù)的圖象與性質(zhì),問題以開放的形式出現(xiàn),著重突出對考生數(shù)學(xué)素質(zhì)的要求.點(diǎn)評:討論了函數(shù)的解析式的一些常用的變換技巧(賦值、變量代換、換元等等),這都是函數(shù)學(xué)習(xí)的常用基本功變式題:(2009北京文)已知函數(shù)若,則 . .w.w.k.s.5 答案 .w 解析 5.u.c本題主要考查分段函數(shù)和簡單的已知函數(shù)值求的值. 屬于基礎(chǔ)知識、基本運(yùn)算的考查.由,無解,故應(yīng)填.例2(2007安徽 文理15)(1)函數(shù)對于任意實(shí)數(shù)滿足條件,若則_ _;解:(1)由得,所以,則。點(diǎn)評:通過對抽象函數(shù)的限制條件,變量換元得到函數(shù)解析式,考察學(xué)生的邏輯思維能力。題型二:判斷兩個函數(shù)是否相同例3試判斷以下各組函數(shù)是否表示同一函數(shù)?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=()2n1(nN*);(4)f(x)=,g(x)=;(5)f(x)=x22x1,g(t)=t22t1。解:(1)由于f(x)=|x|,g(x)=x,故它們的值域及對應(yīng)法則都不相同,所以它們不是同一函數(shù);(2)由于函數(shù)f(x)=的定義域?yàn)椋ǎ?)(0,+),而g(x)=的定義域?yàn)镽,所以它們不是同一函數(shù);(3)由于當(dāng)nN*時,2n1為奇數(shù),f(x)=x,g(x)=()2n1=x,它們的定義域、值域及對應(yīng)法則都相同,所以它們是同一函數(shù);(4)由于函數(shù)f(x)=的定義域?yàn)閤|x0,而g(x)=的定義域?yàn)閤|x1或x0,它們的定義域不同,所以它們不是同一函數(shù);(5)函數(shù)的定義域、值域和對應(yīng)法則都相同,所以它們是同一函數(shù)點(diǎn)評:對于兩個函數(shù)y=f(x)和y=g(x),當(dāng)且僅當(dāng)它們的定義域、值域、對應(yīng)法則都相同時,y=f(x)和y=g(x)才表示同一函數(shù)若兩個函數(shù)表示同一函數(shù),則它們的圖象完全相同,反之亦然。(1)第(5)小題易錯判斷成它們是不同的函數(shù),原因是對函數(shù)的概念理解不透要知道,在函數(shù)的定義域及對應(yīng)法則f不變的條件下,自變量變換字母,以至變換成其他字母的表達(dá)式,這對于函數(shù)本身并無影響,比如f(x)=x2+1,f(t)=t2+1,f(u+1)=(u+1)2+1都可視為同一函數(shù)。(2)對于兩個函數(shù)來講,只要函數(shù)的三要素中有一要素不相同,則這兩個函數(shù)就不可能是同一函數(shù)題型三:函數(shù)定義域問題例4求下述函數(shù)的定義域:(1);(2)解:(1),解得函數(shù)定義域?yàn)?(2) ,(先對a進(jìn)行分類討論,然后對k進(jìn)行分類討論), 當(dāng)a=0時,函數(shù)定義域?yàn)?;?dāng)時,得,1)當(dāng)時,函數(shù)定義域?yàn)椋?)當(dāng)時,函數(shù)定義域?yàn)椋?)當(dāng)時,函數(shù)定義域?yàn)?;?dāng)時,得,1)當(dāng)時,函數(shù)定義域?yàn)椋?)當(dāng)時,函數(shù)定義域?yàn)椋?)當(dāng)時,函數(shù)定義域?yàn)?。點(diǎn)評:在這里只需要根據(jù)解析式有意義,列出不等式,但第(2)小題的解析式中含有參數(shù),要對參數(shù)的取值進(jìn)行討論,考察學(xué)生分類討論的能力例5已知函數(shù)定義域?yàn)?0,2),求下列函數(shù)的定義域:(1) ;(2)。解:(1)由0x2, 得 點(diǎn)評:本例不給出f(x)的解析式,即由f(x)的定義域求函數(shù)fg(x)的定義域關(guān)鍵在于理解復(fù)合函數(shù)的意義,用好換元法;求函數(shù)定義域的第三種類型是一些數(shù)學(xué)問題或?qū)嶋H問題中產(chǎn)生的函數(shù)關(guān)系,求其定義域,后面還會涉及到變式題:已知函數(shù)f(x)=的定義域是R,則實(shí)數(shù)a的取值范圍是( )AaB12a0C12a0Da解:由a=0或可得12a0,答案B。題型四:函數(shù)值域問題例5求下列函數(shù)的值域:(1);(2);(3);(4);(5);(6);(7);(8);(9)。解:(1)(配方法),的值域?yàn)楦念}:求函數(shù),的值域。解:(利用函數(shù)的單調(diào)性)函數(shù)在上單調(diào)增,當(dāng)時,原函數(shù)有最小值為;當(dāng)時,原函數(shù)有最大值為函數(shù),的值域?yàn)?。?)求復(fù)合函數(shù)的值域:設(shè)(),則原函數(shù)可化為。又,故,的值域?yàn)椋?)(法一)反函數(shù)法:的反函數(shù)為,其定義域?yàn)椋瘮?shù)的值域?yàn)椋ǚǘ┓蛛x變量法:,函數(shù)的值域?yàn)?。?)換元法(代數(shù)換元法):設(shè),則,原函數(shù)可化為,原函數(shù)值域?yàn)樽ⅲ嚎偨Y(jié)型值域,變形:或(5)三角換元法:,設(shè),則,原函數(shù)的值域?yàn)椋?)數(shù)形結(jié)合法:,函數(shù)值域?yàn)?。?)判別式法:恒成立,函數(shù)的定義域?yàn)?。由得?當(dāng)即時,即,當(dāng)即時,時方程恒有實(shí)根,且,原函數(shù)的值域?yàn)?。?),當(dāng)且僅當(dāng)時,即時等號成立。,原函數(shù)的值域?yàn)?。?)方程法:原函數(shù)可化為:,(其中),原函數(shù)的值域?yàn)?。點(diǎn)評:上面討論了用初等方法求函數(shù)值域的一些常見類型與方法,在現(xiàn)行的中學(xué)數(shù)學(xué)要求中,求值域要求不高,要求較高的是求函數(shù)的最大與最小值,在后面的復(fù)習(xí)中要作詳盡的討論。題型五:函數(shù)解析式例6(1)已知,求;(2)已知,求;(3)已知是一次函數(shù),且滿足,求;(4)已知滿足,求。解:(1),(或)。(2)令(),則,。(3)設(shè),則,。(4) ,把中的換成,得 ,得,點(diǎn)評:第(1)題用配湊法;第(2)題用換元法;第(3)題已知一次函數(shù),可用待定系數(shù)法;第(4)題用方程組法。例7上海市楊浦區(qū)2007-2008學(xué)年度第二學(xué)期高三學(xué)科測試數(shù)學(xué)試卷已知向量 (1)當(dāng)時, 求的值(2)(文科考生做) 求的最大值與最小值(理科考生做)求, 在上的最大值與最小值 解 (1)(2)(文)= (理) 例8江蘇省濱??h08屆高三第三次聯(lián)考數(shù)學(xué)試卷2008-5-4 據(jù)調(diào)查,某地區(qū)100萬從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民,人均收入3000元,為了增加農(nóng)民的收入,當(dāng)?shù)卣e極引進(jìn)資本,建立各種加工企業(yè),對當(dāng)?shù)氐霓r(nóng)產(chǎn)品進(jìn)行深加工,同時吸收當(dāng)?shù)夭糠洲r(nóng)民進(jìn)入加工企業(yè)工作,據(jù)估計,如果有x(x0)萬人進(jìn)企業(yè)工作,那么剩下從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的人均收入有望提高2x%,而進(jìn)入企業(yè)工作的農(nóng)民的人均收入為3000a元(a0)。(1)在建立加工企業(yè)后,要使從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的年總收入不低于加工企業(yè)建立前的農(nóng)民的年總收入,試求x的取值范圍;(2)在(I)的條件下,當(dāng)?shù)卣畱?yīng)該如何引導(dǎo)農(nóng)民(即x多大時),能使這100萬農(nóng)民的人均年收入達(dá)到最大。解:(I)由題意得(100-x)3000(1+2x%)1003000,即x250x0,解得0x50, 又x0 0x50; (II)設(shè)這100萬農(nóng)民的人均年收入為y元,則y= =x25(a+1)2+3000+475(a+1)2 (0x50)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度海外勞務(wù)派遣人員安全防護(hù)提醒合同4篇
- 二零二五版鋼結(jié)構(gòu)安裝與綠色建筑認(rèn)證合同3篇
- 2025年度個人二手房居住權(quán)買賣及裝修工程監(jiān)理合同4篇
- 2025年度廚具設(shè)計與制造一體化服務(wù)合同4篇
- 《濾波器比較》課件
- 2025年度“唐代古董藝術(shù)品修復(fù)與展覽合同”3篇
- 二零二五年度床上用品跨境電商合同4篇
- 《氣相色譜分離技術(shù)》課件
- 2024裝修裝飾合同
- 2025年度飼料行業(yè)綠色發(fā)展基金投資合同
- 人力資源 -人效評估指導(dǎo)手冊
- 大疆80分鐘在線測評題
- 2024屆廣東省廣州市高三上學(xué)期調(diào)研測試英語試題及答案
- 中煤平朔集團(tuán)有限公司招聘筆試題庫2024
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 不付租金解除合同通知書
- 區(qū)域合作伙伴合作協(xié)議書范本
- 中學(xué)數(shù)學(xué)教學(xué)設(shè)計全套教學(xué)課件
- 環(huán)衛(wèi)公司年終工作總結(jié)
- 2023年德宏隴川縣人民法院招聘聘用制書記員考試真題及答案
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
評論
0/150
提交評論