




已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2013年普通高考數(shù)學(xué)科一輪復(fù)習(xí)精品學(xué)案第26講 平面向量的數(shù)量積及應(yīng)用一課標(biāo)要求:1平面向量的數(shù)量積通過物理中功等實(shí)例,理解平面向量數(shù)量積的含義及其物理意義;體會平面向量的數(shù)量積與向量投影的關(guān)系;掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量數(shù)量積的運(yùn)算;能運(yùn)用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。2向量的應(yīng)用經(jīng)歷用向量方法解決某些簡單的平面幾何問題、力學(xué)問題與其他一些實(shí)際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力。二命題走向本講以選擇題、填空題考察本章的基本概念和性質(zhì),重點(diǎn)考察平面向量的數(shù)量積的概念及應(yīng)用。重點(diǎn)體會向量為代數(shù)幾何的結(jié)合體,此類題難度不大,分值59分。平面向量的綜合問題是“新熱點(diǎn)”題型,其形式為與直線、圓錐曲線、三角函數(shù)等聯(lián)系,解決角度、垂直、共線等問題,以解答題為主。預(yù)測2013年高考:(1)一道選擇題和填空題,重點(diǎn)考察平行、垂直關(guān)系的判定或夾角、長度問題;屬于中檔題目。(2)一道解答題,可能以三角、數(shù)列、解析幾何為載體,考察向量的運(yùn)算和性質(zhì);三要點(diǎn)精講1向量的數(shù)量積(1)兩個非零向量的夾角已知非零向量a與a,作,則aa()叫與的夾角;說明:(1)當(dāng)時(shí),與同向;(2)當(dāng)時(shí),與反向;(3)當(dāng)時(shí),與垂直,記;(4)注意在兩向量的夾角定義,兩向量必須是同起點(diǎn)的,范圍0q180。c(2)數(shù)量積的概念已知兩個非零向量與,它們的夾角為,則=cos叫做與的數(shù)量積(或內(nèi)積)。規(guī)定;向量的投影:cos=r,稱為向量在方向上的投影。投影的絕對值稱為射影;(3)數(shù)量積的幾何意義: 等于的長度與在方向上的投影的乘積。(4)向量數(shù)量積的性質(zhì)向量的模與平方的關(guān)系:。乘法公式成立;平面向量數(shù)量積的運(yùn)算律交換律成立:;對實(shí)數(shù)的結(jié)合律成立:;分配律成立:。向量的夾角:cos=。當(dāng)且僅當(dāng)兩個非零向量與同方向時(shí),=00,當(dāng)且僅當(dāng)與反方向時(shí)=1800,同時(shí)與其它任何非零向量之間不談夾角這一問題。(5)兩個向量的數(shù)量積的坐標(biāo)運(yùn)算已知兩個向量,則=。(6)垂直:如果與的夾角為900則稱與垂直,記作。兩個非零向量垂直的充要條件:o,平面向量數(shù)量積的性質(zhì)。(7)平面內(nèi)兩點(diǎn)間的距離公式設(shè),則或。如果表示向量的有向線段的起點(diǎn)和終點(diǎn)的坐標(biāo)分別為、,那么(平面內(nèi)兩點(diǎn)間的距離公式)。2向量的應(yīng)用(1)向量在幾何中的應(yīng)用;(2)向量在物理中的應(yīng)用。四典例解析題型1:數(shù)量積的概念例1判斷下列各命題正確與否:(1);(2);(3)若,則;(4)若,則當(dāng)且僅當(dāng)時(shí)成立;(5)對任意向量都成立;(6)對任意向量,有。解析:(1)錯;(2)對;(3)錯;(4)錯;(5)錯;(6)對。點(diǎn)評:通過該題我們清楚了向量的數(shù)乘與數(shù)量積之間的區(qū)別于聯(lián)系,重點(diǎn)清楚為零向量,而為零。例2(1)若、為任意向量,mr,則下列等式不一定成立的是( )a bcm()=m+m d(2)設(shè)、是任意的非零平面向量,且相互不共線,則()()= | ()()不與垂直 (3+2)(32)=9|24|2中,是真命題的有( )a. b. c. d.解析:(1)答案:d;因?yàn)?,而;而方向與方向不一定同向。(2)答案:d平面向量的數(shù)量積不滿足結(jié)合律。故假;由向量的減法運(yùn)算可知|、|、|恰為一個三角形的三條邊長,由“兩邊之差小于第三邊”,故真;因?yàn)椋ǎǎ?()()=0,所以垂直.故假;(3+2)(32)=94=9|24|2成立。故真。點(diǎn)評:本題考查平面向量的數(shù)量積及運(yùn)算律,向量的數(shù)量積運(yùn)算不滿足結(jié)合律。題型2:向量的夾角例3(1)已知向量、滿足、,且,則與的夾角為( )a b c d(2)已知向量=(cos,sin),=(cos,sin),且,那么與的夾角的大小是 。(3)已知兩單位向量與的夾角為,若,試求與的夾角。(4)| |=1,| |=2,= + ,且,則向量與的夾角為( )a30b60c120d150解析:(1)c;(2);(3)由題意,且與的夾角為,所以,同理可得。而,設(shè)為與的夾角,則。(4)c;設(shè)所求兩向量的夾角為即:所以點(diǎn)評:解決向量的夾角問題時(shí)要借助于公式,要掌握向量坐標(biāo)形式的運(yùn)算。向量的模的求法和向量間的乘法計(jì)算可見一斑。對于這個公式的變形應(yīng)用應(yīng)該做到熟練,另外向量垂直(平行)的充要條件必需掌握。例4(1)設(shè)平面向量、的和。如果向量、,滿足,且順時(shí)針旋轉(zhuǎn)后與同向,其中,則( )a+= b-+=c+-= d+=(2)已知 且關(guān)于的方程有實(shí)根, 則與的夾角的取值范圍是( )a b c d解析:(1)d;(2)b;點(diǎn)評:對于平面向量的數(shù)量積要學(xué)會技巧性應(yīng)用,解決好實(shí)際問題。題型3:向量的模例5(1)已知向量與的夾角為,則等于( ) a5b4c3d1(2)設(shè)向量滿足,則( )a1 b2 c4 d5解析:(1)b;(2)d;點(diǎn)評:掌握向量數(shù)量積的逆運(yùn)算,以及。例6已知(3,4),(4,3),求x,y的值使(x+y),且x+y=1。解析:由(3,4),(4,3),有x+y=(3x+4y,4x+3y);又(x+y)(x+y)3(3x+4y)+4(4x+3y)=0;即25x+24y ;又x+y=1x+y;(x+4y)(x+3y);整理得25x48xy+25y即x(25x+24y)+24xy+25y ;由有24xy+25y ;將變形代入可得:y=;再代回得:。點(diǎn)評:這里兩個條件互相制約,注意體現(xiàn)方程組思想。題型4:向量垂直、平行的判定例7已知向量,且,則 。解析:,。例8已知,按下列條件求實(shí)數(shù)的值。(1);(2);。解析:(1);(2);。點(diǎn)評:此例展示了向量在坐標(biāo)形式下的平行、垂直、模的基本運(yùn)算。題型5:平面向量在代數(shù)中的應(yīng)用例9已知。 分析:,可以看作向量的模的平方,而則是、的數(shù)量積,從而運(yùn)用數(shù)量積的性質(zhì)證出該不等式。 證明:設(shè) 則。點(diǎn)評:在向量這部分內(nèi)容的學(xué)習(xí)過程中,我們接觸了不少含不等式結(jié)構(gòu)的式子,如等。例10已知,其中。 (1)求證:與互相垂直; (2)若與()的長度相等,求。 解析:(1)因?yàn)?所以與互相垂直。 (2), , 所以, , 因?yàn)椋?所以, 有, 因?yàn)?,故?又因?yàn)?,所以。點(diǎn)評:平面向量與三角函數(shù)在“角”之間存在著密切的聯(lián)系。如果在平面向量與三角函數(shù)的交匯處設(shè)計(jì)考題,其形式多樣,解法靈活,極富思維性和挑戰(zhàn)性。若根據(jù)所給的三角式的結(jié)構(gòu)及向量間的相互關(guān)系進(jìn)行處理。可使解題過程得到簡化,從而提高解題的速度。題型6:平面向量在幾何圖形中的應(yīng)用例11已知兩點(diǎn),且點(diǎn)p(x,y)使得,成公差小于零的等差數(shù)列。(1)求證;(2)若點(diǎn)p的坐標(biāo)為,記與的夾角為,求。解析:(1)略解:,由直接法得(2)當(dāng)p不在x軸上時(shí),而所以,當(dāng)p在x軸上時(shí),上式仍成立。圖1點(diǎn)評:由正弦面積公式得到了三角形面積與數(shù)量積之間的關(guān)系,由面積相等法建立等量關(guān)系。例12用向量法證明:直徑所對的圓周角是直角。已知:如圖,ab是o的直徑,點(diǎn)p是o上任一點(diǎn)(不與a、b重合),求證:apb90。證明:聯(lián)結(jié)op,設(shè)向量,則且,即apb90。點(diǎn)評:平面向量是一個解決數(shù)學(xué)問題的很好工具,它具有良好的運(yùn)算和清晰的幾何意義。在數(shù)學(xué)的各個分支和相關(guān)學(xué)科中有著廣泛的應(yīng)用。題型7:平面向量在物理中的應(yīng)用例13如圖所示,正六邊形pabcde的邊長為b,有五個力、作用于同一點(diǎn)p,求五個力的合力。解析:所求五個力的合力為,如圖3所示,以pa、pe為邊作平行四邊形paoe,則,由正六邊形的性質(zhì)可知,且o點(diǎn)在pc上,以pb、pd為邊作平行四邊形pbfd,則,由正六邊形的性質(zhì)可知,且f點(diǎn)在pc的延長線上。由正六邊形的性質(zhì)還可求得故由向量的加法可知所求五個力的合力的大小為,方向與的方向相同。五思維總結(jié)1兩個向量的數(shù)量積與向量同實(shí)數(shù)積有很大區(qū)別(1)兩個向量的數(shù)量積是一個實(shí)數(shù),不是向量,符號由cosq的符號所決定;(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成;今后要學(xué)到兩個向量的外積,而是兩個向量的數(shù)量的積,書寫時(shí)要嚴(yán)格區(qū)分.符號“ ”在向量運(yùn)算中不是乘號,既不能省略,也不能用“”代替;(3)在實(shí)數(shù)中,若a0,且ab=0,則b=0;但是在數(shù)量積中,若0,且=0,不能推出=。因?yàn)槠渲衏osq有可能為0;(4)已知實(shí)數(shù)a、b、c(b0),則ab=bc a=c。但是= ;如右圖:= |cosb = |oa|,c = |c|cosa = |oa| =,但 ; (5)在實(shí)數(shù)中,有() = (),但是() (),顯然,這是因?yàn)樽蠖耸桥cc共線的向量,而右端是與共線的向量,而一般與c不共線。2平面向量數(shù)量積的運(yùn)算律特別注意:(1)結(jié)合律不成立:;(2)消去律不成立不能得到;(3)=0不能得到=或=。3向量知識,向量觀點(diǎn)在數(shù)學(xué).物理等學(xué)科的很多分支有著廣泛的應(yīng)用,而它具有代數(shù)形式和幾何形式的“雙重身份”能融數(shù)形于一體,能與中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的許多主干知識綜合,形成知識交匯點(diǎn),所以高考中應(yīng)引起足夠的重視. 數(shù)量積的主要應(yīng)用:求模長;求夾角;判垂直;4注重?cái)?shù)學(xué)思想方法的教學(xué)數(shù)形結(jié)合的思想方法。由于向量本身具有代數(shù)形式和幾何形式雙重身份,所以在向量知識的整個學(xué)習(xí)過程中,都體現(xiàn)了數(shù)形結(jié)合的思想方法,在解決問題過程中要形成見數(shù)思形、以形助數(shù)的思維習(xí)慣,以加深理解知識要點(diǎn),增強(qiáng)應(yīng)用意識?;瘹w轉(zhuǎn)化的思想方法。向量的夾角、平行、垂直等關(guān)系的研究均可化歸為對應(yīng)向量或向量坐標(biāo)的運(yùn)算問題;三角形形狀的判定可化歸為相應(yīng)向量的數(shù)量積問題;向量的數(shù)量積公式,溝通了向量與實(shí)數(shù)間的轉(zhuǎn)化關(guān)系;一些實(shí)際問題也可以運(yùn)用向量知識去解決。分類討論的思想方法。如向量可分為共線向量與不共線向量;平行向量(共線向量)可分為同向向量和反向向量;向量在方向上的投影隨著它們之間的夾角的不同,有正數(shù)、負(fù)數(shù)和零三種情形;定比分點(diǎn)公式中的隨分點(diǎn)p的位置不同,可以大于零,也可以小于零。5突出向量與其它數(shù)學(xué)知識的交匯“新課程增加了新的現(xiàn)代數(shù)學(xué)內(nèi)容,其
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能制造園區(qū)場地使用權(quán)轉(zhuǎn)讓協(xié)議
- 倉庫管理員的崗位職責(zé)和要求
- 書法空間展覽活動方案
- 書城志愿活動方案
- 發(fā)電企業(yè)輿情管理制度
- 廠區(qū)宿舍衛(wèi)生管理制度
- 【課件】有理數(shù)的加法法則(第2課時(shí))課件++2024-2025學(xué)年人教版(2024)七年級+數(shù)學(xué)上冊+
- 公司被褥領(lǐng)用管理制度
- 公司物資預(yù)約管理制度
- 改進(jìn)維持性血液透析患者貧血狀況PDCA
- 2021-2022學(xué)年北京市朝陽區(qū)五年級(下)期末英語試卷
- 12花絲鑲嵌的制作流程花絲工藝
- 蘇教版2022~2023學(xué)年小學(xué)數(shù)學(xué)畢業(yè)模擬檢測試卷(二)
- 高壓電工證培訓(xùn)課件(第6章電力系統(tǒng)過壓)
- 公路工程投標(biāo)技術(shù)標(biāo)施工組織設(shè)計(jì)
- GB/T 22875-2008衛(wèi)生巾高吸收性樹脂
- GB/T 12830-2008硫化橡膠或熱塑性橡膠與剛性板剪切模量和粘合強(qiáng)度的測定四板剪切法
- 《批判性思維》如何掌握批判性思維課件
- 中醫(yī)院重點(diǎn)專科“康復(fù)科”建設(shè)計(jì)劃
- 國家開放大學(xué)《人文英語3》章節(jié)測試參考答案
評論
0/150
提交評論