位似圖形概念_第1頁
位似圖形概念_第2頁
位似圖形概念_第3頁
位似圖形概念_第4頁
位似圖形概念_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

27. 3 位似(一)1一、教學(xué)目標(biāo)了解位似圖形及其有關(guān)概念,了解位似與相似的聯(lián)系和區(qū)別,掌握位似圖形的性質(zhì)2掌握位似圖形的畫法,能夠利用作位似圖形的方法將一個(gè)圖形放大或縮小二、重點(diǎn)、難點(diǎn)1重點(diǎn):位似圖形的有關(guān)概念、性質(zhì)與作圖2難點(diǎn):利用位似將一個(gè)圖形放大或縮小3難點(diǎn)的突破方法(1)位似圖形:如果兩個(gè)多邊形不僅相似,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,這時(shí)的相似比又稱為位似比(2)掌握位似圖形概念,需注意:位似是一種具有位置關(guān)系的相似,所以兩個(gè)圖形是位似圖形,必定是相似圖形,而相似圖形不一定是位似圖形;兩個(gè)位似圖形的位似中心只有一個(gè);兩個(gè)位似圖形可能位于位似中心的兩側(cè),也可能位于位似中心的一側(cè);位似比就是相似比利用位似圖形的定義可判斷兩個(gè)圖形是否位似(3)位似圖形首先是相似圖形,所以它具有相似圖形的一切性質(zhì)位似圖形是一種特殊的相似圖形,它又具有特殊的性質(zhì),位似圖形上任意一對對應(yīng)點(diǎn)到位似中心的距離等于位似比(相似比)(4)兩個(gè)位似圖形的主要特征是:每對位似對應(yīng)點(diǎn)與位似中心共線;不經(jīng)過位似中心的對應(yīng)線段平行(5)利用位似,可以將一個(gè)圖形放大或縮小,其步驟見下面例題作圖時(shí)要注意:首先確定位似中心,位似中心的位置可隨意選擇;確定原圖形的關(guān)鍵點(diǎn),如四邊形有四個(gè)關(guān)鍵點(diǎn),即它的四個(gè)頂點(diǎn);確定位似比,根據(jù)位似比的取值,可以判斷是將一個(gè)圖形放大還是縮??;符合要求的圖形不惟一,因?yàn)樗鞯膱D形與所確定的位似中心的位置有關(guān)(如例2),并且同一個(gè)位似中心的兩側(cè)各有一個(gè)符合要求的圖形(如例2中的圖2與圖3)三、例題的意圖 本節(jié)課安排了兩個(gè)例題,例1是補(bǔ)充的一個(gè)例題,通過辨別位似圖形,鞏固位似圖形的概念,讓學(xué)生理解位似圖形必須滿足兩個(gè)條件:(1)兩個(gè)圖形是相似圖形;(2)兩個(gè)相似圖形每對對應(yīng)點(diǎn)所在的直線都經(jīng)過同一點(diǎn),二者缺一不可例2是教材P61例題,通過例2 的教學(xué),使學(xué)生掌握位似圖形的畫法,能夠利用作位似圖形的方法將一個(gè)圖形放大或縮小講解例2時(shí),要注意引導(dǎo)學(xué)生能夠用不同的方法畫出所要求作的圖形,要讓學(xué)生通過作圖理解符合要求的圖形不惟一,這和所作的圖形與所確定的位似中心的位置有關(guān)(如位似中心O可能選在四邊形ABCD外,可能選在四邊形ABCD內(nèi),可能選在四邊形ABCD的一條邊上,可能選在四邊形ABCD的一個(gè)頂點(diǎn)上)并且同一個(gè)位似中心的兩側(cè)各有一個(gè)符合要求的圖形(如例2 中的圖2與圖3),因此,位似中心的確定是作出圖形的關(guān)鍵要及時(shí)強(qiáng)調(diào)注意的問題(見難點(diǎn)的突破方法),及時(shí)總結(jié)作圖的步驟(見例2),并讓學(xué)生練習(xí)找所給圖形的位似中心的題目(如課堂練習(xí)2),以使學(xué)生真正掌握位似圖形的概念與作圖四、課堂引入1觀察:在日常生活中,我們經(jīng)常見到下面所給的這樣一類相似的圖形,它們有什么特征? 2問:已知:如圖,多邊形ABCDE,把它放大為原來的2倍,即新圖與原圖的相似比為2應(yīng)該怎樣做?你能說出畫相似圖形的一種方法嗎?五、例題講解例1(補(bǔ)充)如圖,指出下列各圖中的兩個(gè)圖形是否是位似圖形,如果是位似圖形,請指出其位似中心 分析:位似圖形是特殊位置上的相似圖形,因此判斷兩個(gè)圖形是否為位似圖形,首先要看這兩個(gè)圖形是否相似,再看對應(yīng)點(diǎn)的連線是否都經(jīng)過同一點(diǎn),這兩個(gè)方面缺一不可 解:圖(1)、(2)和(4)三個(gè)圖形中的兩個(gè)圖形都是位似圖形,位似中心分別是圖(1)中的點(diǎn)A ,圖(2)中的點(diǎn)P和圖(4)中的點(diǎn)O(圖(3)中的點(diǎn)O不是對應(yīng)點(diǎn)連線的交點(diǎn),故圖(3)不是位似圖形,圖(5)也不是位似圖形) 例2(教材P61例題)把圖1中的四邊形ABCD縮小到原來的 分析:把原圖形縮小到原來的,也就是使新圖形上各頂點(diǎn)到位似中心的距離與原圖形各對應(yīng)頂點(diǎn)到位似中心的距離之比為12 作法一:(1)在四邊形ABCD外任取一點(diǎn)O;(2)過點(diǎn)O分別作射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A、B、C、D,使得;(4)順次連接AB、BC、CD、DA,得到所要畫的四邊形ABCD,如圖2問:此題目還可以如何畫出圖形?作法二:(1)在四邊形ABCD外任取一點(diǎn)O;(2)過點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點(diǎn)A、B、C、D,使得;(4)順次連接AB、BC、CD、DA,得到所要畫的四邊形ABCD,如圖3 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A、B、C、D,使得;(4)順次連接AB、BC、CD、DA,得到所要畫的四邊形ABCD,如圖4(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略可以讓學(xué)生自己完成)六、課堂練習(xí)1教材P611、22畫出所給圖中的位似中心1 把右圖中的五邊形ABCDE擴(kuò)大到原來的2倍七、課后練習(xí)1教材P651、2、42已知:如圖,ABC,畫ABC,使ABCABC,且使相似比為1.5,要求(1)位似中心在ABC的外部;(2)位似中心在ABC的內(nèi)部;(3)位似中心在ABC的一條邊上;(4)以點(diǎn)C為位似中心 教學(xué)反思27. 3 位似(二)一、教學(xué)目標(biāo)1鞏固位似圖形及其有關(guān)概念2會用圖形的坐標(biāo)的變化來表示圖形的位似變換,掌握把一個(gè)圖形按一定大小比例放大或縮小后,點(diǎn)的坐標(biāo)變化的規(guī)律3了解四種變換(平移、軸對稱、旋轉(zhuǎn)和位似)的異同,并能在復(fù)雜圖形中找出這些變換二、重點(diǎn)、難點(diǎn)1重點(diǎn):用圖形的坐標(biāo)的變化來表示圖形的位似變換2難點(diǎn):把一個(gè)圖形按一定大小比例放大或縮小后,點(diǎn)的坐標(biāo)變化的規(guī)律3難點(diǎn)的突破方法(1)相似與軸對稱、平移、旋轉(zhuǎn)一樣,也是圖形之間的一個(gè)基本變換,因此一些特殊的相似(如位似)也可以用圖形坐標(biāo)的變化來表示(2)帶領(lǐng)學(xué)生共同探究出位似變換中對應(yīng)點(diǎn)的坐標(biāo)的變化規(guī)律:在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k(3)在平面直角坐標(biāo)系中,用圖形的坐標(biāo)的變化來表示圖形的位似變換的關(guān)鍵是要確定位似圖形各個(gè)頂點(diǎn)的坐標(biāo),而不同方法得到的圖形坐標(biāo)是不同的如:已知:ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3),B(2,0),C(6,2),以點(diǎn)O為位似中心,相似比為2,將ABC放大,根據(jù)前面(2)總結(jié)的變化規(guī)律,點(diǎn)A的對應(yīng)點(diǎn)A的坐標(biāo)為(12,32),即A(2,6),或點(diǎn)A的對應(yīng)點(diǎn)A的坐標(biāo)為(1(-2),3(-2)),即A(-2,-6)類似地,可以確定其他頂點(diǎn)的坐標(biāo)(4)本節(jié)課的最后要給學(xué)生總結(jié)(或讓學(xué)生自己總結(jié))平移、軸對稱、旋轉(zhuǎn)和位似四種變換的異同:圖形經(jīng)過平移、旋轉(zhuǎn)或軸對稱的變換后,雖然對應(yīng)位置改變了,但大小和形狀沒有改變,即兩個(gè)圖形是全等的;而圖形放大或縮?。ㄎ凰谱儞Q)之后是相似的并讓學(xué)生練習(xí)在所給的圖案中,找出平移、軸對稱、旋轉(zhuǎn)和位似這些變換三、例題的意圖本節(jié)課安排了兩個(gè)例題,例1是教材P63的例題,它是在引導(dǎo)學(xué)生尋找出位似變換中對應(yīng)點(diǎn)的坐標(biāo)的變化規(guī)律后的一個(gè)用圖形的坐標(biāo)的變化來表示圖形的位似變換的題目,其目的是鞏固新知識,幫助學(xué)生加深理解用圖形的坐標(biāo)的變化來表示圖形的位似變換知識,此題目應(yīng)讓學(xué)生用不同方法作出圖形例2是教材P64的一個(gè)問題,它是“平移、軸對稱、旋轉(zhuǎn)和位似”四種變換的一個(gè)綜合題目,所給的圖案由于觀察的角度不同,答案就會不同,因此應(yīng)讓學(xué)生自己來回答,并在順利完成這個(gè)題目基礎(chǔ)上,讓學(xué)生自己總結(jié)出這四種變換的異同 四、課堂引入1如圖,ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,3),B(2,1),C(6,2),(1)將ABC向左平移三個(gè)單位得到A1B1C1,寫出A1、B1、C1三點(diǎn)的坐標(biāo);(2)寫出ABC關(guān)于x軸對稱的A2B2C2三個(gè)頂點(diǎn)A2、B2、C2的坐標(biāo);(3)將ABC繞點(diǎn)O旋轉(zhuǎn)180得到A3B3C3,寫出A3、B3、C3三點(diǎn)的坐標(biāo)2在前面幾冊教科書中,我們學(xué)習(xí)了在平面直角坐標(biāo)系中,如何用坐標(biāo)表示某些平移、軸對稱、旋轉(zhuǎn)(中心對稱)等變換,相似也是一種圖形的變換,一些特殊的相似(如位似)也可以用圖形坐標(biāo)的變化來表示3探究:(1)如圖,在平面直角坐標(biāo)系中,有兩點(diǎn)A(6,3),B(6,0)以原點(diǎn)O為位似中心,相似比為,把線段AB縮小觀察對應(yīng)點(diǎn)之間坐標(biāo)的變化,你有什么發(fā)現(xiàn)?(2)如圖,ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,3),B(2,1),C(6,2),以點(diǎn)O為位似中心,相似比為2,將ABC放大,觀察對應(yīng)頂點(diǎn)坐標(biāo)的變化,你有什么發(fā)現(xiàn)?【歸納】 位似變換中對應(yīng)點(diǎn)的坐標(biāo)的變化規(guī)律:在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k五、例題講解例1(教材P63的例題)分析:略(見教材P63的例題分析)解:略(見教材P63的例題解答)問:你還可以得到其他圖形嗎?請你自己試一試!解法二:點(diǎn)A的對應(yīng)點(diǎn)A的坐標(biāo)為(-6,6),即A(3,-3)類似地,可以確定其他頂點(diǎn)的坐標(biāo)(具體解法與作圖略)例2(教材P64)在右圖所示的圖案中,你能找出平移、軸對稱、旋轉(zhuǎn)和位似這些變換嗎? 分析:觀察的角度不同,答案就不同如:它可以看作是一排魚順時(shí)針旋轉(zhuǎn)45角,連續(xù)旋轉(zhuǎn)八次得到的旋轉(zhuǎn)圖形;它還可以看作位似中心是圖形的正中心,相似比是4321的位似圖形, 解:答案不惟一,略六、課堂練習(xí)1 教材P641、22 ABO的定點(diǎn)坐標(biāo)分別為A(-1,4),B(3,2),O(0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論