高中數(shù)學(xué)第二章2.2對(duì)數(shù)函數(shù)2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(一)學(xué)案(含解析)新人教A版.docx_第1頁
高中數(shù)學(xué)第二章2.2對(duì)數(shù)函數(shù)2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(一)學(xué)案(含解析)新人教A版.docx_第2頁
高中數(shù)學(xué)第二章2.2對(duì)數(shù)函數(shù)2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(一)學(xué)案(含解析)新人教A版.docx_第3頁
高中數(shù)學(xué)第二章2.2對(duì)數(shù)函數(shù)2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(一)學(xué)案(含解析)新人教A版.docx_第4頁
高中數(shù)學(xué)第二章2.2對(duì)數(shù)函數(shù)2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(一)學(xué)案(含解析)新人教A版.docx_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(一)學(xué)習(xí)目標(biāo)1.理解對(duì)數(shù)函數(shù)的概念.2.掌握對(duì)數(shù)函數(shù)的性質(zhì).3.了解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡(jiǎn)單應(yīng)用知識(shí)點(diǎn)一對(duì)數(shù)函數(shù)的概念思考已知函數(shù)y2x,那么反過來,x是否為關(guān)于y的函數(shù)?答案由于y2x是單調(diào)函數(shù),所以對(duì)于任意y(0,)都有唯一確定的x與之對(duì)應(yīng),故x也是關(guān)于y的函數(shù),其函數(shù)關(guān)系式是xlog2y,此處y(0,)習(xí)慣上用x,y分別表示自變量、因變量上式可改為ylog2x,x(0,)梳理一般地,把函數(shù)ylogax(a0,且a1)叫做對(duì)數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是(0,)知識(shí)點(diǎn)二對(duì)數(shù)函數(shù)的圖象與性質(zhì)對(duì)數(shù)函數(shù)ylogax(a0,且a1)的圖象和性質(zhì)如下表:定義ylogax (a0,且a1)底數(shù)a10a0.()2y2log2x是對(duì)數(shù)函數(shù)()3yax與ylogax的單調(diào)區(qū)間相同()4由loga10,可得ylogax恒過定點(diǎn)(1,0)()類型一對(duì)數(shù)函數(shù)的定義域的應(yīng)用例1求下列函數(shù)的定義域(1)yloga(3x)loga(3x);(2)ylog2(164x)考點(diǎn)對(duì)數(shù)函數(shù)的定義域題點(diǎn)對(duì)數(shù)函數(shù)的定義域解(1)由得3x3,函數(shù)的定義域是x|3x0,得4x1642,由指數(shù)函數(shù)的單調(diào)性得x2,函數(shù)ylog2(164x)的定義域?yàn)閤|x3.函數(shù)yloga(x3)loga(x3)的定義域?yàn)閤|x32求函數(shù)yloga(x3)(x3)的定義域,相比引申探究1,定義域有何變化?解(x3)(x3)0,即或解得x3.函數(shù)yloga(x3)(x3)的定義域?yàn)閤|x3相比引申探究1,函數(shù)yloga(x3)(x3)的定義域多了(,3)這個(gè)區(qū)間,原因是對(duì)于yloga(x3)(x3),要使對(duì)數(shù)有意義,只需(x3)與(x3)同號(hào),而對(duì)于yloga(x3)loga(x3),要使對(duì)數(shù)有意義,必須(x3)與(x3)同時(shí)大于0.反思與感悟求含對(duì)數(shù)式的函數(shù)定義域關(guān)鍵是真數(shù)大于0,底數(shù)大于0且不為1.如需對(duì)函數(shù)式變形,需注意真數(shù)底數(shù)的取值范圍是否改變跟蹤訓(xùn)練1求下列函數(shù)的定義域(1)y;(2)ylog(x1)(164x);考點(diǎn)對(duì)數(shù)函數(shù)的定義域題點(diǎn)對(duì)數(shù)函數(shù)的定義域解(1)要使函數(shù)有意義,需即即3x2或x2,故所求函數(shù)的定義域?yàn)?3,2)2,)(2)要使函數(shù)有意義,需即所以1x2,且x0,故所求函數(shù)的定義域?yàn)閤|1x0,且a1)考點(diǎn)對(duì)數(shù)值大小比較題點(diǎn)對(duì)數(shù)值大小比較解(1)考察對(duì)數(shù)函數(shù)ylog2x,因?yàn)樗牡讛?shù)21,所以它在(0,)上是增函數(shù),又3.48.5,于是log23.4log28.5.(2)考察對(duì)數(shù)函數(shù)ylog0.3x,因?yàn)樗牡讛?shù)00.3log0.32.7.(3)當(dāng)a1時(shí),ylogax在(0,)上是增函數(shù),又5.15.9,于是loga5.1loga5.9;當(dāng)0aloga5.9.綜上,當(dāng)a1時(shí),loga5.1loga5.9,當(dāng)0a1時(shí),loga5.1loga5.9.反思與感悟比較兩個(gè)同底數(shù)的對(duì)數(shù)大小,首先要根據(jù)對(duì)數(shù)底數(shù)來判斷對(duì)數(shù)函數(shù)的增減性;然后比較真數(shù)大小,再利用對(duì)數(shù)函數(shù)的增減性判斷兩對(duì)數(shù)值的大小對(duì)于底數(shù)以字母形式出現(xiàn)的,需要對(duì)底數(shù)a進(jìn)行討論對(duì)于不同底的對(duì)數(shù),可以估算范圍,如log22log23log24,即1log232,從而借助中間值比較大小跟蹤訓(xùn)練2設(shè)alog3,blog2,clog3,則()AabcBacbCbacDbca考點(diǎn)對(duì)數(shù)值大小比較題點(diǎn)對(duì)數(shù)值大小比較答案A解析alog31,blog23,其中l(wèi)og22log230,3x11.ylog2x在(0,)上單調(diào)遞增,log2(3x1)log210.即f(x)的值域?yàn)?0,)反思與感悟在函數(shù)三要素中,值域從屬于定義域和對(duì)應(yīng)關(guān)系故求ylogaf(x)型函數(shù)的值域必先求定義域,進(jìn)而確定f(x)的范圍,再利用對(duì)數(shù)函數(shù)ylogax的單調(diào)性求出logaf(x)的取值范圍跟蹤訓(xùn)練3已知f(x)log2(1x)log2(x3),求f(x)的定義域、值城考點(diǎn)對(duì)數(shù)函數(shù)的值域題點(diǎn)真數(shù)為二次函數(shù)的對(duì)數(shù)型函數(shù)的值域解要使函數(shù)式有意義,需解得定義域?yàn)?3,1)f(x)log2(1x)(x3)log2(x1)24x(3,1),(x1)24(0,4log2(x1)24(,2即f(x)的值域?yàn)?,2類型三對(duì)數(shù)函數(shù)的圖象例4畫出函數(shù)ylg|x1|的圖象考點(diǎn)對(duì)數(shù)函數(shù)的圖象題點(diǎn)含絕對(duì)值的對(duì)數(shù)函數(shù)的圖象解(1)先畫出函數(shù)ylgx的圖象(如圖)(2)再畫出函數(shù)ylg|x|的圖象(如圖)(3)最后畫出函數(shù)ylg|x1|的圖象(如圖)反思與感悟現(xiàn)在畫圖象很少單純依靠描點(diǎn),大多是以基本初等函數(shù)為原料加工,所以一方面要掌握一些常見的平移、對(duì)稱變換的結(jié)論,另一方面要關(guān)注定義域、值域、單調(diào)性、關(guān)鍵點(diǎn)跟蹤訓(xùn)練4畫出函數(shù)y|lg(x1)|的圖象考點(diǎn)對(duì)數(shù)函數(shù)的圖象題點(diǎn)含絕對(duì)值的對(duì)數(shù)函數(shù)的圖象解(1)先畫出函數(shù)ylgx的圖象(如圖)(2)再畫出函數(shù)ylg(x1)的圖象(如圖)(3)再畫出函數(shù)y|lg(x1)|的圖象(如圖)1下列函數(shù)為對(duì)數(shù)函數(shù)的是()Aylogax1(a0且a1)Byloga(2x)(a0且a1)Cylog(a1)x(a1且a2)Dy2logax(a0且a1)考點(diǎn)對(duì)數(shù)函數(shù)的概念題點(diǎn)對(duì)數(shù)函數(shù)的概念答案C2函數(shù)ylog2(x2)的定義域是()A(0,) B(1,)C(2,) D4,)考點(diǎn)對(duì)數(shù)函數(shù)的定義域題點(diǎn)對(duì)數(shù)函數(shù)的定義域答案C3函數(shù)y2log4(1x)的圖象大致是()考點(diǎn)對(duì)數(shù)函數(shù)的圖象題點(diǎn)對(duì)數(shù)函數(shù)的圖象答案C解析函數(shù)y2log4(1x)的定義域?yàn)?,1),排除A,B;又函數(shù)y2log4(1x)在定義域內(nèi)單調(diào)遞減,排除D.故選C.4函數(shù)f(x)log0.2(2x1)的值域?yàn)開考點(diǎn)對(duì)數(shù)函數(shù)的值域題點(diǎn)對(duì)數(shù)函數(shù)的值域答案(,0)5若函數(shù)f(x)2loga(2x)3(a0,且a1)過定點(diǎn)P,則點(diǎn)P的坐標(biāo)是_考點(diǎn)對(duì)數(shù)函數(shù)的性質(zhì)題點(diǎn)對(duì)數(shù)函數(shù)圖象過定點(diǎn)問題答案(1,3)1含有對(duì)數(shù)符號(hào)“l(fā)og”的函數(shù)不一定是對(duì)數(shù)函數(shù)判斷一個(gè)函數(shù)是否為對(duì)數(shù)函數(shù),不僅要含有對(duì)數(shù)符號(hào)“l(fā)og”,還要符合對(duì)數(shù)函數(shù)的概念,即形如ylogax(a0,且a1)的形式如:y2log2x,ylog5都不是對(duì)數(shù)函數(shù),可稱其為對(duì)數(shù)型函數(shù)2研究ylogaf(x)的性質(zhì)如定義域、值域、比較大小,均需依托對(duì)數(shù)函數(shù)的相應(yīng)性質(zhì)一、選擇題1給出下列函數(shù):ylogx2;ylog3(x1);ylog(x1)x;ylogx.其中是對(duì)數(shù)函數(shù)的有()A1個(gè)B2個(gè)C3個(gè)D4個(gè)考點(diǎn)對(duì)數(shù)函數(shù)的概念題點(diǎn)對(duì)數(shù)函數(shù)的概念答案A解析不是對(duì)數(shù)函數(shù),因?yàn)閷?duì)數(shù)的真數(shù)不是只含有自變量x;不是對(duì)數(shù)函數(shù),因?yàn)閷?duì)數(shù)的底數(shù)不是常數(shù);是對(duì)數(shù)函數(shù)2已知函數(shù)f(x)的定義域?yàn)镸,g(x)ln(1x)的定義域?yàn)镹,則MN等于()Ax|x1Bx|x1Cx|1x0x|x0x|x1,MNx|1x0,且a1,函數(shù)yax與yloga(x)的圖象只能是下圖中的()考點(diǎn)對(duì)數(shù)函數(shù)的圖象題點(diǎn)同一坐標(biāo)系下的指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象答案B解析yax與yloga(x)的單調(diào)性相反,排除A,D.yloga(x)的定義域?yàn)?,0),排除C,故選B.4已知函數(shù)f(x)loga(x2),若圖象過點(diǎn)(6,3),則f(2)的值為()A2B2C.D考點(diǎn)對(duì)數(shù)函數(shù)的性質(zhì)題點(diǎn)對(duì)數(shù)函數(shù)圖象過定點(diǎn)問題答案B解析代入(6,3),3loga(62)loga8,即a38,a2.f(x)log2(x2),f(2)log2(22)2.5若函數(shù)f(x)loga(xb)的圖象如圖所示:其中a,b為常數(shù),則函數(shù)g(x)axb的圖象大致是()考點(diǎn)對(duì)數(shù)函數(shù)的圖象題點(diǎn)同一坐標(biāo)系下的指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象答案D解析由f(x)的圖象可知0a1,0blog0.52.3Blog34log65Clog34log56Dlogeln考點(diǎn)對(duì)數(shù)值大小比較題點(diǎn)對(duì)數(shù)值大小比較答案D解析對(duì)A,根據(jù)ylog0.5x為單調(diào)減函數(shù)易知正確對(duì)B,由log34log331log55log65可知正確對(duì)C,由log341log31log31log5log56可知正確對(duì)D,由e1,得ln1loge可知錯(cuò)誤7已知f(x)2log3x,x,則f(x)的最小值為()A2B3C4D0考點(diǎn)對(duì)數(shù)函數(shù)的值域題點(diǎn)對(duì)數(shù)函數(shù)的值域答案A解析x9,log3log3xlog39,即4log3x2,22log3x4.當(dāng)x時(shí),f(x)min2.8已知函數(shù)f(x)loga|x1|在(1,0)上有f(x)0,那么()Af(x)在(,0)上是增函數(shù)Bf(x)在(,0)上是減函數(shù)Cf(x)在(,1)上是增函數(shù)Df(x)在(,1)上是減函數(shù)考點(diǎn)對(duì)數(shù)函數(shù)的圖象題點(diǎn)含絕對(duì)值的對(duì)數(shù)函數(shù)的圖象答案C解析當(dāng)x(1,0)時(shí),|x1|(0,1),loga|x1|0,0a1,畫出f(x)的圖象如圖:由圖可知選C.二、填空題9.已知函數(shù)f(x)的圖象如圖所示,則函數(shù)g(x)logf(x)的定義域是_考點(diǎn)對(duì)數(shù)函數(shù)的定義域題點(diǎn)對(duì)數(shù)函數(shù)的定義域答案x|20,由所給圖象可知f(x)0的解集為x|2cb解析因?yàn)?,所以alog21,所以blog1,所以021,即0ccb.11已知函數(shù)f(x)|lgx|,若0ab,且f(a)f(b),則a4b的取值范圍是_考點(diǎn)對(duì)數(shù)函數(shù)的圖象題點(diǎn)含絕對(duì)值的對(duì)數(shù)函數(shù)的圖象答案(5,)解析因?yàn)閒(a)f(b),且0ab,所以0a1g(1)15,即a4b的取值范圍是(5,)三、解答題12已知f(x)log2(x1),當(dāng)點(diǎn)(x,y)在函數(shù)yf(x)的圖象上時(shí),點(diǎn)在函數(shù)yg(x)的圖象上(1)寫出yg(x)的解析式;(2)求方程f(x)g(x)0的根考點(diǎn)對(duì)數(shù)函數(shù)的解析式題點(diǎn)對(duì)數(shù)函數(shù)的解析式解(1)設(shè)x,y,則x3x,y2y.(x,y)在yf(x)的圖象上,ylog2(x1),2ylog2(3x1),ylog2(3x1),即點(diǎn)(x,y)在ylog2(3x1)的圖象上g(x)log2(3x1)(2)f(x)g(x)0,即log2(x1)log2(3x1)log2,x1,解得x0或x1.13已知1x4,求函數(shù)f(x)log2log2的最大值與最小值考點(diǎn)對(duì)數(shù)函數(shù)的值域題點(diǎn)對(duì)數(shù)函數(shù)的值域解f(x)log2log2(log2x2)(log2x1)2,又1x4,0log2x2,當(dāng)log2x,即x22時(shí),f(x)取最小值;當(dāng)lo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論