char2-1數(shù)列極限.ppt_第1頁
char2-1數(shù)列極限.ppt_第2頁
char2-1數(shù)列極限.ppt_第3頁
char2-1數(shù)列極限.ppt_第4頁
char2-1數(shù)列極限.ppt_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第二章 極限,1 數(shù)列極限,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,1、割圓術(shù):,播放,劉徽,一、概念的引入,正六邊形的面積,正十二邊形的面積,正 形的面積,2、截丈問題:,“一尺之棰,日截其半,萬世不竭”,二、數(shù)列的定義,例如,注意:,1.數(shù)列對應(yīng)著數(shù)軸上一個(gè)點(diǎn)列.可看作一動(dòng)點(diǎn)在數(shù)軸上依次取,2.數(shù)列是整標(biāo)函數(shù),播放,三、數(shù)列的極限,問題:,當(dāng) 無限增大時(shí), 是否無限接近于某一確定的數(shù)值?如果是,如何確定?,問題:,“無限接近”意味著什么?如何用數(shù)學(xué)語言刻劃它.,數(shù)列極限的定性描述:,如果數(shù)列沒有極限,就說數(shù)列是發(fā)散的.,注意:,幾何解釋:,數(shù)列極限的定義未給出求極限的方法.,例1,證,所以,注意:,例2,證,所以,說明:常數(shù)列的極限等于同一常數(shù).,小結(jié):,用定義證數(shù)列極限存在時(shí),關(guān)鍵是任意給定 尋找N,但不必要求最小的N.,例3,證,例4,證,四、數(shù)列極限的性質(zhì),1、有界性,例如,有界,無界,定理1 收斂的數(shù)列必定有界.,證,由定義,注意:有界性是數(shù)列收斂的必要條件.,推論 無界數(shù)列必定發(fā)散.,2、唯一性,定理2 每個(gè)收斂的數(shù)列只有一個(gè)極限.,證,由定義,故收斂數(shù)列極限唯一.,例5,證,由定義,區(qū)間長度為1.,不可能同時(shí)位于長度為1的區(qū)間內(nèi).,3、子數(shù)列的收斂性,注意:,例如,,定理3 收斂數(shù)列的任一子數(shù)列也收斂且極限相同,證,證畢,五、小結(jié),數(shù)列:研究其變化規(guī)律;,數(shù)列極限:極限思想、精確定義、幾何意義;,收斂數(shù)列的性質(zhì): 有界性、唯一性、子數(shù)列的收斂性.,思考題,證明,要使,只要使,從而由,得,取,當(dāng) 時(shí),必有 成立,思考題解答,(等價(jià)),證明中所采用的,實(shí)際上就是不等式,即證明中沒有采用“適當(dāng)放大”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論