




已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)輔導(dǎo)8摘要:四,概率加法公式 1,對(duì)任意事件A,B,有概率加法公式P(A+B)=P(A)+P(B)-P(AB) 2,互斥事件加法公式,是概率加法公式的特例. 若事件A與B互不相容,即AB=.關(guān)鍵詞:概率,公式類別:專題技術(shù)來(lái)源:牛檔搜索(Niudown.COM)本文系牛檔搜索(Niudown.COM)根據(jù)用戶的指令自動(dòng)搜索的結(jié)果,文中內(nèi)涉及到的資料均來(lái)自互聯(lián)網(wǎng),用于學(xué)習(xí)交流經(jīng)驗(yàn),作品其著作權(quán)歸原作者所有。不代表牛檔搜索(Niudown.COM)贊成本文的內(nèi)容或立場(chǎng),牛檔搜索(Niudown.COM)不對(duì)其付相應(yīng)的法律責(zé)任!經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)輔導(dǎo)8溫州電大 葉挺峰 第三編 概率論 第六章 數(shù)據(jù)處理一、 特征數(shù)反映統(tǒng)計(jì)數(shù)據(jù)主要特征的數(shù),稱為特征數(shù)。統(tǒng)計(jì)分析中最常用的特征數(shù)分為兩類:1 表示數(shù)據(jù)總體水平的數(shù)。如均值、加權(quán)平均數(shù)、幾何平均數(shù)和眾數(shù)統(tǒng)稱為平均數(shù)。2 表示數(shù)據(jù)分散程度的數(shù)。常用的有方差、標(biāo)準(zhǔn)差、極差和變異系數(shù)等。(一)均值1定義:給定一組數(shù)值x1,x2,xn,稱= ( x1+x2+xn)= xi為數(shù)據(jù)x1,x2,xn的均值。 均值是通常所說(shuō)的算術(shù)平均數(shù)。實(shí)際問(wèn)題中,常用樣本的均值來(lái)估計(jì)總體均值或用均值代表總體水平,與不同的總體進(jìn)行比較。2 性質(zhì):(1) (xi)0(2)任何一個(gè)常數(shù)C,總 (xic)2(xi)2僅在c=時(shí)等號(hào)成立。(二)加權(quán)平均值 計(jì)算一組數(shù)據(jù)的均值時(shí),若考慮各數(shù)據(jù)出現(xiàn)次數(shù),或權(quán)衡數(shù)據(jù)的作用程度,用加權(quán)平均數(shù)。1 定義:給定一組數(shù)x1,x2,xn,和一組正數(shù)p1,p2,pn,且 ,稱x1p1+x2p2+xnpn為x1,x2,xn的加權(quán)平均數(shù),pi為xi的權(quán)。2 注意: (1)權(quán)pi滿足0pi1且 (2)權(quán)大的數(shù)據(jù)對(duì)加權(quán)平均數(shù)影響大; (3)均值可看作加權(quán)平均數(shù)特殊情況,均值中每個(gè)數(shù)據(jù)的權(quán)可看作。(三)幾何平均數(shù) n個(gè)數(shù)據(jù)x1,x2,xn的連乘積n次算術(shù)根稱為數(shù)據(jù)x1,x2,xn 的幾何平均數(shù)。(四)中位數(shù)和眾數(shù)1 中位數(shù):將一組有限個(gè)數(shù)據(jù)x1,x2,xn 按小到大的順序排成數(shù)列,記為x1,x2,xn 。(1)n為奇數(shù),處于中間位置的數(shù)稱為中位數(shù),中間位置是M=(n+1),中位數(shù)是xm 。(2)n為偶數(shù),中間有兩個(gè)數(shù) 和 ,它們的平均值是中位數(shù),即xm (+)2、眾數(shù)一組統(tǒng)計(jì)數(shù)據(jù)中,出現(xiàn)次數(shù)(或頻數(shù))最多的那個(gè)數(shù)據(jù),稱為眾數(shù)。(五)方差和標(biāo)準(zhǔn)差1、方差:給定一組數(shù)據(jù)x1,x2,xn 稱S2為數(shù)據(jù)x1,x2,xn 的方差,其中是x1,x2,xn 的均值。2、標(biāo)準(zhǔn)差(又名均方差)稱方差的算術(shù)平方根 為數(shù)據(jù)x1,x2,xn 的標(biāo)準(zhǔn)差。3、方差簡(jiǎn)化計(jì)算: S24、方差S2的作用 S2越大,說(shuō)明數(shù)據(jù)“分散”,波動(dòng)性越大;S2越小,說(shuō)明數(shù)據(jù)“集中”,波動(dòng)性越?。?S20,即x1x2xn ,說(shuō)明數(shù)據(jù)沒(méi)有波動(dòng)。(六)極差和變異系數(shù)一組數(shù)據(jù)x1,x2,xn 中的最大值減去最小值,即R=MaxxiMinxi(1in)稱為x1,x2,xn 的極差。S與之比稱為數(shù)據(jù)x1,x2,xn 的變異系數(shù),記為cv 即cv第三編 第七章 隨機(jī)事件與概率一、 隨機(jī)事件與概率 在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事件,簡(jiǎn)稱事件。 通常用大寫字母A、B、C、表示。例如:拋一枚硬幣,H出現(xiàn)正面,T出現(xiàn)反面,一枚硬幣拋出后,H和T兩個(gè)事件之一一定發(fā)生,所以H、T是隨機(jī)事件。 隨機(jī)事件A在一次試驗(yàn)中,發(fā)生的可能性大小,用概率表示,記為P(A)。在一定條件下,必定發(fā)生的事件,稱為必然事件,記為U,有P(U)1。在一定條件下,不會(huì)發(fā)生的事件,稱為不可能事件,記為,有P()0。二、事件的關(guān)系與運(yùn)算1、 包含與相等事件A發(fā)生,事件B必發(fā)生,則稱事件A包含于B,或事件B包含事件A,記為AB。若AB,BA,則A=B2、 事件的和事件“A或B”稱為事件A與事件B的和事件,記作AB或AB。 AB發(fā)生,即“A或B”發(fā)生,意思是A、B兩事件中至少有一個(gè)發(fā)生。3、 事件的積事件“A且B”稱為事件A與B的積事件,記為AB或AB。事件“A且B,表示事件A和B都發(fā)生。4、 互不相容事件事件A與B不能同時(shí)發(fā)生,稱事件A與B互不相容,或事件A、B為互斥事件。 A與B互不相容,則有AB。5、 對(duì)立事件與事件的差若事件A、B滿足AB,ABU,則稱事件A、B互為對(duì)立事件。以表示A的對(duì)立事件,則有A,A+=U,A,若事件A發(fā)生而事件B不發(fā)生,則這一事件稱為A與B的差事件,記為AB。三、古典概型與概率的性質(zhì)1、古典概型:在每次試驗(yàn)中,只有有限個(gè)等可能發(fā)生的事件,且只有一個(gè)事件發(fā)生,這種計(jì)算概率的模型,稱為古典概型。可用古典概型計(jì)算的概率稱為古典概率。計(jì)算方法:如果試驗(yàn)只有n個(gè)等可能結(jié)果,其中導(dǎo)致事件A出現(xiàn)的結(jié)果有k個(gè),則事件A出現(xiàn)的概率為P(A)。這公式也稱為概率的古典定義。例如:拋一枚硬幣,H正面朝上,求P(H)。解:拋一枚硬幣,落地后只有兩個(gè)等可能,正面朝上或反面朝上,n=2。正面朝上,只有一個(gè)可能,k=1。故P(H)2、概率的性質(zhì):(1) 任何隨機(jī)事件A的概率P(A)都有0P(A)1(2)P(U)=1,P()0有P()P(A)P(U)四、概率加法公式 1、對(duì)任意事件A、B,有概率加法公式P(AB)P(A)P(B)P(AB) 2、互斥事件加法公式,是概率加法公式的特例。 若事件A與B互不相容,即AB,則P(AB)P(A)P(B)這公式可推出:若事件A1,A2,An兩兩互不相容,則 P(A1,A2,An)P( A1)P(An)若AU,有P()1P(A);例如:從裝有7個(gè)(4白,3黑)球的袋中任取3只球,求取到白球的概率。 解:設(shè)A取到白球 B取出3個(gè)都是黑球 AB A P(B)= P(A)=P()=1P(B)10.029=0.971五、條件概率:1、 定義:如果A、B是條件組S下的隨機(jī)事件,P(B)0,那么稱在B發(fā)生的前提下A發(fā)生的概率為條件概率,記為P(A|B)。2、 計(jì)算公式:P(A|B)3、 乘法公式:由條件概率公式得以下公式:設(shè)任意事件A、B,有概率乘法公式P(AB)P(A)P(B|A),(P(A) 0); 或P(AB)P(B)(A|B),(P(B) 0);例如:設(shè)箱中有50個(gè)產(chǎn)品,其中有次品10個(gè),從中依次任意取出兩個(gè)產(chǎn)品,每次取一個(gè)不再放回,試求兩個(gè)產(chǎn)品都是正品的概率。解:設(shè)A第一次取得正品 B=第二次取得正品所求概率應(yīng)為P(AB) P(AB) P(B|A)由乘法公式,得 P(AB)P(A)P(B|A)0.6367六、事件的獨(dú)立性如果事件A、B滿足條件P(AB)P(A)P(B),則稱事件A、B是相互獨(dú)立的。 獨(dú)立性概念可推廣到多個(gè)事件的情況,如:A、B、C獨(dú)立時(shí),有 P(ABC)P(A)P(B)P(C)例如:假設(shè)一個(gè)問(wèn)題由兩個(gè)學(xué)生分別獨(dú)立解決,如果每個(gè)學(xué)生各自解決問(wèn)題的概率是,求此問(wèn)題能夠解決的概率。 解:設(shè)A學(xué)生甲解決問(wèn)題 B學(xué)生乙解決問(wèn)題 A、B、獨(dú)立,P(A)P(B) 此問(wèn)題能夠解決的概率,就是至少一個(gè)人解決問(wèn)題的概率,因此有 P(AB)P(A)P(B)P(AB) P(A)P(B)P(A)P(B) 由事件的獨(dú)立性可推出:當(dāng)事件A與B相互獨(dú)立時(shí),1、P(B|A)P(B) P(A|B)P(A) 2、A與, 與B, 與也相互獨(dú)立。自測(cè)題:一、 選擇題: 1、一組數(shù)據(jù)為26,18,27,24,20,11,這組數(shù)據(jù)的中位數(shù)是( ) A、22 B、27 C、21 D、24 2、用以反映數(shù)據(jù)x1,x2,xn分散程度的是( ) A、中位數(shù) B、方差 C、眾數(shù) D、平均數(shù) 3、設(shè)x1,x2,xn是一組數(shù)據(jù),p1,p2,pn分別是它們的權(quán)數(shù),則這組數(shù)據(jù)的加權(quán)平均數(shù)=( ) A、 B、C、 D、4、設(shè)A、B、C是三個(gè)事件,那么A、B、C中恰有一件發(fā)生的事件表示為( ) A、A+B+C B、A+B+CC、 D、5、甲、乙二人射擊,A、B分別表示甲、乙射中目標(biāo)的事件,則事件 表示( ) A、二人都沒(méi)射中 B、至少有一人沒(méi)射中 C、二人都射中 D、至少有一人射中6、若等式( )成立,則事件A與B互不相容。A、 B、ABUC、P(AB)P(A)P(B) D、P(A)P(B)17、設(shè)事件A、B互不相容,則以下各式一定成立的是( ) A、ABU B、AB C、P(A)1P(B) D、P(AB)P(A)P(B) 8、若等式( )成立,則事件A與B相互獨(dú)立。 A、P(AB)P(A)P(B) B、P(A)1P(B) C、P(AB)0 D、P(A|B)=P(A)9、若事件A、B和AB的概率分別為P(A)=0.5,P(B)=0.4,P(AB)0.3則 P(AB)( ) A、0.3 B、0.4 C、0.5 D、0.6二、填空題:1、設(shè)x1,x2,xn 是一組數(shù)據(jù),則其標(biāo)準(zhǔn)差是 。2、擲兩顆均勻的骰子,出現(xiàn)點(diǎn)數(shù)和為5的概率是 。3、設(shè)事件A與B相互獨(dú)立,并且P(AB)0.9,P(B)=0.8則P(A) 。三、計(jì)算題: 1、設(shè)A、B是兩個(gè)相互獨(dú)立的隨機(jī)事件,已知P(A)0.4,P(B)=0.7,求A與B只有一個(gè)發(fā)生的概率。2、已知P(B)0.6,P(B)0.4,求P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)據(jù)分析與商業(yè)智能的關(guān)系的試題及答案
- 軟件設(shè)計(jì)師考試筆試技巧試題及答案
- 小學(xué)生道德判斷能力的培養(yǎng)計(jì)劃
- 企業(yè)靈活創(chuàng)新與戰(zhàn)略風(fēng)險(xiǎn)轉(zhuǎn)變的實(shí)質(zhì)考核試題及答案
- 幼兒園創(chuàng)意手工活動(dòng)計(jì)劃
- 財(cái)務(wù)報(bào)表中隱含的信息分析計(jì)劃
- 福建省南平市劍津片區(qū)2025屆八下數(shù)學(xué)期末監(jiān)測(cè)模擬試題含解析
- 學(xué)生自我管理與反思計(jì)劃
- 2024年臺(tái)州溫嶺市箬橫鎮(zhèn)中心衛(wèi)生院招聘真題
- 2024年陜西工運(yùn)學(xué)院輔導(dǎo)員考試真題
- 新建鋁廠可行性方案
- 電梯修理(T)實(shí)操考試題目
- 《冷凝器設(shè)計(jì)》課件
- 中醫(yī)臨床醫(yī)學(xué)針灸在強(qiáng)迫癥治療中的應(yīng)用
- 紹興市星域電子游藝廳建設(shè)項(xiàng)目環(huán)境影響報(bào)告
- 全球職等系統(tǒng)GGS職位評(píng)估手冊(cè)
- 頭頸部鱗癌治療現(xiàn)狀及免疫治療進(jìn)展
- 律師評(píng)析:實(shí)際施工人訴訟案例
- 《電力工程電纜設(shè)計(jì)規(guī)范》
- 女性生育力保存
- 廠房窗戶安裝施工方案
評(píng)論
0/150
提交評(píng)論