版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第4講解三角形,第4講解三角形 1.已知a,b,c是銳角ABC中A,B,C的對邊,若a=3,b=4,ABC的面積為3,則c=.,答案,解析S=absin C=6sin C=3,sin C=.又ABC是銳角三角形,則C= ,cos C=.由余弦定理可得c2=9+16-234=13,即c=.,2.(2018江蘇南京期中)在ABC中,角A,B,C所對的邊分別為a,b,c.已知b-c=a, 2sin B=3sin C,則cos A的值為 .,答案-,解析由正弦定理及2sin B=3sin C,可得b=c,代入b-c=a,得a=2c,由余弦定 理得cos A=-.,3.(2018江蘇蘇州期中)設(shè)ABC的
2、內(nèi)角A,B,C的對邊分別是a,b,c,D為AB的中點(diǎn),若b=acos C+csin A且CD=,則ABC面積的最大值是 .,答案+1,解析b=acos C+csin A,由正弦定理可得sin B=sin Acos C+sin Csin A,則sin(A+C)=sin Acos C+sin Csin A,所以cos Asin C=sin Csin A.C(0,),sin C0,tan A=1.又A(0,),A=.在ACD中,由余弦定理可得2=b2+c2-2b bc-bc,bc=4+2,當(dāng)且僅當(dāng)b=c時(shí)取等號(hào),則ABC面積的 最大值是bcsin A=(4+2)=+1.,4.設(shè)a,b,c依次是ABC
3、的角A,B,C所對的邊,若=1 007tan C,且a2+b2=mc2,則m= .,答案2 015,解析由=1 007tan C,得= =1 007, cos C=.又cos C=, 1 007c2=, a2+b2=2 015c2,m=2 015.,題型一正、余弦定理的應(yīng)用,例1(2018江蘇揚(yáng)州調(diào)研)在ABC中,角A,B,C的對邊分別為a,b,c, 已知cos A=-,b=,c=. (1)求a; (2)求cos(B-A)的值.,解析(1)在ABC中,因?yàn)閏os A=-,b=,c=,所以a2=b2+c2-2bccos A=2+5-2=9. 因?yàn)閍為邊長,所以a0,所以a=3. (2)在ABC中
4、,cos A=-,所以A, 所以sin A=. 又=,即=,所以sin B=. 又A,所以B,所以cos B=. 所以cos(B-A)=cos Bcos A+sin Bsin A=+=.,【方法歸納】(1)正、余弦定理在三角形邊角互化中具有重要應(yīng)用,注意正弦定理的變形在解題中的應(yīng)用,如a=2Rsin A,sin B=(其中R是ABC外接圓 的半徑),abc=sin Asin Bsin C等; (2)常見題型:已知兩角和一邊,如已知A,B和c,由A+B+C=求出C,由正弦定理求出a,b;已知兩邊和這兩邊的夾角,如已知a,b和C,應(yīng)先用余弦定理求出c,再用正弦定理求較短邊所對的角,然后利用A+B+
5、C=求出另一角;已知兩邊和其中一邊的對角,如已知a,b和A,應(yīng)先用正弦定理求出B,由A+B+C=求出C,再由正弦定理或余弦定理求出c,要注意解可能有多種情況;已知三邊a,b,c,可用余弦定理求出A,B,C.,1-1(2018蘇錫常鎮(zhèn)四市調(diào)研)已知在ABC中,角A,B,C所對的邊分別為a,b,c.若cos A=,sin C=. (1)求tan B; (2)若a2+b2=7,求c的值.,解析(1)在ABC中,由cos A=, 得sin A=. 又sin C=,所以sin Csin A,所以CA,所以C為銳角. 于是cos C=, 所以tan A=2,tan C=, 所以tan B=-tan(A+C
6、)=-=-=.,(2)由=,sin2B+cos2B=1,得sin B=.由=,得= .又a2+b2=7,解得所以c2=a2+b2-2abcos C=7-4=3,所以c=.,題型二三角函數(shù)與解三角形,例2(2018江蘇海安高級(jí)中學(xué)月考)已知函數(shù)f(x)=2sincos x. (1)求函數(shù)f(x)的最大值和最小正周期; (2)設(shè)ABC的角A,B,C的對邊分別為a,b,c,且c=2, f(C)=,若sin B=2sin A,求 a,b的值.,解析(1)f(x)=2sincos x =2cos x=sin xcos x-cos2x =sin 2x-=sin-, 當(dāng)且僅當(dāng)x=+k,kZ時(shí), f(x)ma
7、x=,最小正周期T=.,(2)f(C)=sin-=,即sin=1,因?yàn)?C,所以-2C-,于 是2C-=,即C=.因?yàn)閟in B=2sin A,所以由正弦定理得b=2a.由余弦定理得c2 =a2+b2-2abcos,即a2+b2-ab=12.聯(lián)立解得,【方法歸納】解題步驟:(1)利用三角公式將解析式化為標(biāo)準(zhǔn)型;(2)結(jié)合三角函數(shù)的圖象研究三角函數(shù)的性質(zhì);(3)利用正弦定理、余弦定理實(shí)現(xiàn)邊角互化.,2-1(2018江蘇泰州中學(xué)月考)已知f(x)=sin-cos x. (1)求f(x)在0,上的最小值; (2)已知a,b,c分別為ABC中角A,B,C的對邊,b=5,cos A=,且f(B)=1,求
8、邊a 的長.,解析(1)f(x)=-cos x=sin x+cos x=sin, 0 x,x+, x+=,即x=時(shí), f(x)min=-. (2)x+=2k+,kZ時(shí), f(x)有最大值1, B是三角形內(nèi)角,B=,sin B=. cos A=,sin A=.又=,b=5,a=8.,題型三平面向量與解三角形,例3(2018江蘇鹽城模擬)在ABC中,角A,B,C的對邊分別為a,b,c,AD為邊BC上的中線. (1)若a=4,b=2,AD=1,求邊c的長; (2)若=c2,求角B的大小.,解析(1)在ADC中,因?yàn)锳D=1,AC=2,DC=BC=2,所以由余弦定理,得cos C=.,故在ABC中,由
9、余弦定理,得c2=a2+b2-2abcos C=42+22-242=6,所以c=. (2)因?yàn)锳D為邊BC上的中線,所以=(+),所以 c2=(+)=+=c2+cbcos A,得c=bcos A. 則c=b,得b2=c2+a2,所以B=90.,【方法歸納】平面向量與解三角形的綜合問題大致有兩種類型:一是向量的線性運(yùn)算、數(shù)量積運(yùn)算與解三角形的綜合,如本例,利用向量的線性運(yùn)算法則、數(shù)量積的定義進(jìn)行向量運(yùn)算,得到邊角混有的恒等式,再利用余弦定理、正弦定理進(jìn)行邊角統(tǒng)一;二是向量的坐標(biāo)運(yùn)算與解三角形的綜合問題,利用向量共線定理的坐標(biāo)表示、數(shù)量積的坐標(biāo)運(yùn)算將向量轉(zhuǎn)化為三角函數(shù),再利用三角公式、正弦定理、余弦定理等求解.,3-1(2018江蘇南京模擬)已知向量m=(cos x,-sin x),n=(cos x,sin x-2cos x),x R.設(shè)f(x)=mn. (1)求函數(shù)f(x)的單調(diào)遞增區(qū)間; (2)在ABC中,角A,B,C所對的邊分別為a,b,c.若f(A)=1,a=2,c=2,求ABC的 面積.,解析(1)f(x)=cos2x-sin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版企業(yè)并購與重組合同:股權(quán)收購合同版B版
- 2024年規(guī)范化人力資源委托管理合同
- 2024跨境電子商務(wù)平臺(tái)建設(shè)與運(yùn)營合作協(xié)議
- 2024年高速路段交通安全設(shè)施采購合同
- 2024店鋪市場推廣合作合同2篇
- 2025年度文化創(chuàng)意產(chǎn)業(yè)財(cái)產(chǎn)抵押擔(dān)保投資合同3篇
- 2025年度大型物流樞紐承包經(jīng)營合同典范3篇
- 2024年網(wǎng)絡(luò)云服務(wù)提供商托管協(xié)議
- 2024年新能源項(xiàng)目技術(shù)顧問聘任協(xié)議3篇
- 2024年度牙齒矯正前后口腔護(hù)理指導(dǎo)服務(wù)合同3篇
- 城市生命線安全…監(jiān)測預(yù)警指揮平臺(tái)建設(shè)方案
- 六年級(jí)數(shù)學(xué)《圓柱的體積》教案(一等獎(jiǎng))
- 2024CSCO惡性腫瘤患者營養(yǎng)治療指南解讀
- 常見化學(xué)專業(yè)詞匯英文翻譯
- 內(nèi)科護(hù)理學(xué)智慧樹知到期末考試答案章節(jié)答案2024年荊門職業(yè)學(xué)院
- (高清版)JTGT 5190-2019 農(nóng)村公路養(yǎng)護(hù)技術(shù)規(guī)范
- 基于視覺果蔬識(shí)別的稱重系統(tǒng)設(shè)計(jì)
- 體育初中學(xué)生學(xué)情分析總結(jié)報(bào)告
- 2024氫氣長管拖車安全使用技術(shù)規(guī)范
- 部編版語文中考必背文言文7-9年級(jí)
- 《中外歷史綱要(上)》期末專題復(fù)習(xí)提綱
評論
0/150
提交評論