kejian 5.1定積分的概念與性質(zhì).ppt_第1頁
kejian 5.1定積分的概念與性質(zhì).ppt_第2頁
kejian 5.1定積分的概念與性質(zhì).ppt_第3頁
kejian 5.1定積分的概念與性質(zhì).ppt_第4頁
kejian 5.1定積分的概念與性質(zhì).ppt_第5頁
已閱讀5頁,還剩67頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第一節(jié) 定積分的概念與性質(zhì),一、問題的提出,二、定積分定義,三、定積分的性質(zhì),四、小結(jié) 思考題,第五章 定積分,一、問題的提出,實(shí)例1 (求曲邊梯形的面積),用矩形面積近似取代曲邊梯形面積,顯然,小矩形越多,矩形總面積越接近曲邊梯形面積,(四個(gè)小矩形),(九個(gè)小矩形),觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,播放,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面

2、積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過

3、程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時(shí), 矩形面積和與曲邊梯形面積的關(guān)系,曲邊梯形如圖所示,,曲邊梯形面積的近似值為,曲邊梯形面積為,實(shí)例2 (求變速直線運(yùn)動(dòng)的路程),思路:把整段時(shí)間分割成若干小段,每小段上速度看作不變,求出各小段的路程再相加,便得到路程的近似值,最后通過對時(shí)間的無限細(xì)分過程求得路程的精確值,(1)分割,(2)求和,(3)取極限,路程的精確值,二、定積分定義,定義,1.定積分定義,記為,積分上限,積分下限,積分和,注意:,定理1,定理2,2. 函數(shù)的可積性,3. 定積分概念的意義,曲邊梯形的面積,曲邊梯形的面積的負(fù)值,4.定

4、積分的幾何意義,幾何意義:,5.定積分與不定積分的區(qū)別,例1 利用定義計(jì)算定積分,解,例2 利用定義計(jì)算定積分,解,證明,利用對數(shù)的性質(zhì)得,極限運(yùn)算與對數(shù)運(yùn)算換序得,故,三、 定積分的性質(zhì),對定積分的補(bǔ)充規(guī)定:,說明,在下面的性質(zhì)中,假定定積分都存在,且不考慮積分上下限的大小,證,(此性質(zhì)可以推廣到有限多個(gè)函數(shù)作和的情況),性質(zhì)1,證,性質(zhì)2,補(bǔ)充:不論 的相對位置如何, 上式總成立.,例 若,(定積分對于積分區(qū)間具有可加性),則,性質(zhì)3,證,性質(zhì)4,性質(zhì)5,解,令,于是,性質(zhì)5的推論:,證,(1),證,說明: 可積性是顯然的.,性質(zhì)5的推論:,(2),證,(此性質(zhì)可用于估計(jì)積分值的大致范圍),性質(zhì)6,解,解,證,由閉區(qū)間上連續(xù)函數(shù)的介值定理知,性質(zhì)7(定積分中值定理),積分中值公式,使,即,積分中值公式的幾何解釋:,在證明問題時(shí)常用, 需多加關(guān)注,解,由積分中值定理知有,使,積分中值定理,利用f(x)的單調(diào)性及積分的估值定理,四、 小結(jié),定積分的實(shí)質(zhì):特殊和式的極限,定積分的思想和方法:,求近似以直(不變)代曲(變),取極限,3定積分的性質(zhì),(注意估值性質(zhì)、積分中值定理的應(yīng)用),4典型問題,()估計(jì)積分值;,()不計(jì)算定積分比較積分大小,思

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論