




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆寧波市鄞州區(qū)市級名校中考押題數(shù)學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.2.如圖是由長方體和圓柱組成的幾何體,它的俯視圖是()A. B. C. D.3.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.104.計算(1-)÷的結果是()A.x-1 B. C. D.5.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.46.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.57.在如圖所示的計算程序中,y與x之間的函數(shù)關系所對應的圖象應為()A. B. C. D.8.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.9.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為()A.(,2) B.(4,1) C.(4,) D.(4,)10.-2的倒數(shù)是()A.-2 B. C. D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點B的坐標為B(),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數(shù)的圖像上,那么k的值是_______12.因式分解:y3﹣16y=_____.13.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).14.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.15.已知一個正數(shù)的平方根是3x-2和5x-6,則這個數(shù)是_____.16.觀光塔是濰坊市區(qū)的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.三、解答題(共8題,共72分)17.(8分)某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.求甲、乙兩種商品的每件進價;該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?18.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數(shù)關系式;(2)直接寫出當x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.19.(8分)我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?20.(8分)如圖是小朋友蕩秋千的側面示意圖,靜止時秋千位于鉛垂線BD上,轉軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.21.(8分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標;(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.22.(10分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.23.(12分)由于霧霾天氣趨于嚴重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式及售價x的取值范圍;售價(元/臺)月銷售量(臺)400200250x(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?24.解方程:-=1
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點睛】此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.2、A【解析】分析:根據(jù)從上邊看得到的圖形是俯視圖,可得答案.詳解:從上邊看外面是正方形,里面是沒有圓心的圓,故選A.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.3、B【解析】
平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小?!逴D⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是利用三角形中位線定理進行求解.4、B【解析】
先計算括號內(nèi)分式的加法、將除式分子因式分解,再將除法轉化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點睛】本題主要考查分式的混合運算,解題的關鍵是掌握分式混合運算順序和運算法則.5、C【解析】
根據(jù)等腰三角形的性質和勾股定理解答即可.【詳解】解:∵點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質,注意等腰三角形的三線合一,熟練運用勾股定理.6、D【解析】
解:,①+②得:3(x+y)=15,則x+y=5,故選D7、D【解析】
先求出一次函數(shù)的關系式,再根據(jù)函數(shù)圖象與坐標軸的交點及函數(shù)圖象的性質解答即可.【詳解】由題意知,函數(shù)關系為一次函數(shù)y=-1x+4,由k=-1<0可知,y隨x的增大而減小,且當x=0時,y=4,當y=0時,x=1.故選D.【點睛】本題考查學生對計算程序及函數(shù)性質的理解.根據(jù)計算程序可知此計算程序所反映的函數(shù)關系為一次函數(shù)y=-1x+4,然后根據(jù)一次函數(shù)的圖象的性質求解.8、A【解析】
解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【點睛】本題考查1.相似三角形的判定與性質;2.平行四邊形的性質,綜合性較強,掌握相關性質定理正確推理論證是解題關鍵.9、D【解析】
由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結論.【詳解】解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),故選:D.【點睛】本題考查正方形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題關鍵.10、B【解析】
根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握二、填空題(本大題共6個小題,每小題3分,共18分)11、-12【解析】過E點作EF⊥OC于F,如圖所示:
由條件可知:OE=OA=5,,所以EF=3,OF=4,
則E點坐標為(-4,3)
設反比例函數(shù)的解析式是y=,則有k=-4×3=-12.故答案是:-12.12、y(y+4)(y﹣4)【解析】試題解析:原式故答案為點睛:提取公因式法和公式法相結合因式分解.13、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!??!嘣赗t△ABG中,由勾股定理得:,即。∴?!啵ㄖ蝗≌担??!?。14、1.【解析】
根據(jù)(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.【點睛】考查了平方差,關鍵是掌握(a+b)(a-b)=a1-b1.15、【解析】
試題解析:根據(jù)題意,得:解得:故答案為【點睛】:一個正數(shù)有2個平方根,它們互為相反數(shù).16、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.三、解答題(共8題,共72分)17、甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲種商品按原銷售單價至少銷售20件.【解析】【分析】設甲種商品的每件進價為x元,乙種商品的每件進價為(x+8))元根據(jù)“某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元購進的甲、乙兩種商品件數(shù)相同”列出方程進行求解即可;設甲種商品按原銷售單價銷售a件,則由“兩種商品全部售完后共獲利不少于2460元”列出不等式進行求解即可.【詳解】設甲種商品的每件進價為x元,則乙種商品的每件進價為元,根據(jù)題意得,,解得,經(jīng)檢驗,是原方程的解,答:甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲乙兩種商品的銷售量為,設甲種商品按原銷售單價銷售a件,則,解得,答:甲種商品按原銷售單價至少銷售20件.【點睛】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找出等量關系列出方程,找出不等關系列出不等式是解題的關鍵.18、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數(shù)關系式;(2)依據(jù)A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數(shù)關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.19、(1)當,時有最大值1;(2)當時,面積有最大值32.【解析】
(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.
(2)設BD=x,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構建二次函數(shù),利用二次函數(shù)的性質即可解決問題.【詳解】(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,
最大面積為×6×(16-6)=1.故當,時有最大值1;(2)當,時有最大值,設,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當時,面積有最大值32.【點睛】本題考查三角形的面積,二次函數(shù)的應用等知識,解題的關鍵是學會利用參數(shù)構建二次函數(shù)解決問題.20、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質的應用,作出輔助線,證明△ACB≌△BFA'是解決問題的關鍵.21、(1);(2)和;(3)【解析】
(1)設,,再根據(jù)根與系數(shù)的關系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標,設出點Q坐標,利用平行四邊形的性質,分類討論點P坐標,利用全等的性質得出P點的橫坐標后,分別代入拋物線解析式,求出P點坐標;(3)過點作DH⊥軸于點,由::,可得::.設,可得點坐標為,可得.設點坐標為.可證△∽△,利用相似性質列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設,,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為.②當以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為∴符合條件的點坐標為和.過點作DH⊥軸于點,∵::,∴::.設,則點坐標為,∴.∵點在拋物線上,∴點坐標為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質、一元二次方程根與系數(shù)關系、三角形相似以及平行四邊形的性質,解答關鍵是綜合運用數(shù)形結合分類討論思想.22、(1)B(1,0),C(0,﹣4);(2)點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點坐標,令x=0可求得C點坐標;(2)①當PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質得到=2,設OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標,過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當BC⊥PC時,△PBC為直角三角形,根據(jù)相似三角形的判定和性質即可得到結論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當AP最大時,OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3762.13-2021新型冠狀病毒檢測技術規(guī)范第13部分:疊氮溴化丙錠-熒光PCR檢測程序
- DB32/T 3518-2019西蘭花速凍技術規(guī)程
- DB32/T 3502-2019教育考試信息數(shù)據(jù)規(guī)范
- DB31/T 693.2-2020蔬菜工廠化育苗技術規(guī)程第2部分:瓜類
- DB31/T 536-2011家禽林地生態(tài)養(yǎng)殖技術規(guī)范
- DB31/T 382-2014地理標志產(chǎn)品崇明老毛蟹
- DB31/T 367-2017黃浦江游覽船及碼頭運營設施與服務質量要求
- DB31/T 329.17-2019重點單位重要部位安全技術防范系統(tǒng)要求第17部分:監(jiān)管場所
- DB31/T 1394-2023塑料制品綠色設計評價導則
- DB31/T 1221-2020傳染病流行期間餐飲服務單位經(jīng)營安全操作指南
- 網(wǎng)絡安全小學生漫畫
- (二調(diào))武漢市2025屆高中畢業(yè)生二月調(diào)研考試 語文試卷(含官方答案解析)
- 《實驗室管理與認可》課件
- 2025年湖南湘西自治州公開招募“三支一扶”高校畢業(yè)生高頻重點提升(共500題)附帶答案詳解
- 2024年國家公務員考試行測真題附解析答案
- 知識付費領域內(nèi)容產(chǎn)品化戰(zhàn)略規(guī)劃及實施步驟設計
- 2025屆天津市濱海新區(qū)高考仿真模擬英語試卷含解析
- 工貿(mào)企業(yè)消防安全管理制度(2篇)
- 【MOOC】環(huán)境資源法學-西南政法大學 中國大學慕課MOOC答案
- 臨時派遣員工合同樣本
- 工程造價工作流程圖
評論
0/150
提交評論