2025年中考數(shù)學(xué)總復(fù)習(xí)《圖形的性質(zhì)解答題》專(zhuān)項(xiàng)測(cè)試卷(含答案)_第1頁(yè)
2025年中考數(shù)學(xué)總復(fù)習(xí)《圖形的性質(zhì)解答題》專(zhuān)項(xiàng)測(cè)試卷(含答案)_第2頁(yè)
2025年中考數(shù)學(xué)總復(fù)習(xí)《圖形的性質(zhì)解答題》專(zhuān)項(xiàng)測(cè)試卷(含答案)_第3頁(yè)
2025年中考數(shù)學(xué)總復(fù)習(xí)《圖形的性質(zhì)解答題》專(zhuān)項(xiàng)測(cè)試卷(含答案)_第4頁(yè)
2025年中考數(shù)學(xué)總復(fù)習(xí)《圖形的性質(zhì)解答題》專(zhuān)項(xiàng)測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025年中考數(shù)學(xué)總復(fù)習(xí)《圖形的性質(zhì)解答題》專(zhuān)項(xiàng)測(cè)試卷含答案

學(xué)校:班級(jí):姓名:考號(hào):

一、解答題

1.如圖,ABLMN,CDLMN,垂足分別是B,D,/FDC=NEBA.

⑴判斷CD與AB的位置關(guān)系;(不需要證明)

(2)求證:DF//BE.

2.如圖,點(diǎn)。在A(yíng)C上,AB=AC,=你能在圖中找到幾個(gè)等腰三角形?分別說(shuō)

出每個(gè)等腰三角形的腰、底邊和頂角.

3.如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)A、2、C在小正方形的頂點(diǎn)上.

⑴在圖中畫(huà)出將線(xiàn)段A8沿著直線(xiàn)AC翻折后的對(duì)應(yīng)線(xiàn)段相>;

(2)在圖中畫(huà)出將線(xiàn)段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90。后的線(xiàn)段AE;

(3)連接。E,貝l]cos/AZ)E=.

4.如圖,在五邊形ABCDE中,AE〃BC,EF平分NAED,CF平分NBCD,若ZEDC=90。,

求NEfC的度數(shù).

AE

5.如圖,四邊形ABC。是菱形,AEL8C于點(diǎn)E,AFLCZ)于點(diǎn)?

(1)求證:AABE義AADF;

⑵若AE=4,CF=2,求菱形的邊長(zhǎng).

6.如圖所示是一個(gè)無(wú)蓋的長(zhǎng)方體紙盒的展開(kāi)圖,紙盒底面積為600cm2.

⑴求紙盒的高為多少cm;

(2)展開(kāi)圖的周長(zhǎng)為多少cm?

7.如圖,已知A8〃CO,48=40。,CN是/BCE的平分線(xiàn),CM1CN,求4CW的度

數(shù).

8.如圖,已知AD.BC相交于點(diǎn)O,AB=CD,AM于點(diǎn)M,DN,3c于點(diǎn)N,BN=CM.

(1)求證:AABMdDCN;

(2)試猜想與OD的大小關(guān)系,并說(shuō)明理由.

9.如圖,在A(yíng)ABC中,ZACB=90°,分別以點(diǎn)8,點(diǎn)C為圓心、大于38c為半徑作弧,兩

弧交于點(diǎn)點(diǎn)N,作直線(xiàn)MN,交邊AB于點(diǎn)。,交邊BC于點(diǎn)、F,過(guò)點(diǎn)C作CE〃AB交

MN于點(diǎn)、E,連接8E.

⑴求證:四邊形CEBD是菱形;

⑵若四邊形ACED是菱形,稟毯寫(xiě)出/CEB的度數(shù).

10.如圖,邊長(zhǎng)為2的正方形ABCD的對(duì)角線(xiàn)AC與交于點(diǎn)0,將正方形ABCD沿直線(xiàn)DF

折疊,點(diǎn)C落在對(duì)角線(xiàn)5。上的點(diǎn)E處,折痕/m交AC于點(diǎn)求點(diǎn)M至IJCD的距離.

11.如圖,在平行四邊形ABCD中,E為4B的中點(diǎn),F(xiàn)為4。上一點(diǎn),EF交AC于點(diǎn)G,

AF=2cm,DF=4cm,AG=3cm,求AC的長(zhǎng).

3

12.如果四邊形ABC。是平行四邊形,AB=6,且AB的長(zhǎng)是口A(yíng)BCD周長(zhǎng)的下,那么5。的

16

長(zhǎng)是多少?

13.如圖,在長(zhǎng)方形ABCZ)中,AB=4,BC=8,點(diǎn)、N,M分別為線(xiàn)段AB,3c上的動(dòng)點(diǎn),

點(diǎn)N從點(diǎn)B出發(fā),沿54方向,以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)M從點(diǎn)C出發(fā),

沿CB方向,以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)8運(yùn)動(dòng),點(diǎn)M與點(diǎn)N同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為

t秒,連接DM,DN,MN.

(2)試判斷四邊形BMDN的面積是否發(fā)生變化?若不變化,請(qǐng)求出其值;若變化,請(qǐng)說(shuō)明理由;

⑶請(qǐng)?zhí)骄?DM%NADN,之間的數(shù)量關(guān)系,并說(shuō)明理由.

14.如圖,四邊形ABC。和四邊形的。均為菱形,且NE45ZABC.點(diǎn)G在線(xiàn)段AD上,

己知AD=5,AG=3,且COS/ABC=L,連接AF,BF,求昉的長(zhǎng).

2

15.如圖,點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),連接PD,將線(xiàn)

段PD繞點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)90。得到線(xiàn)段PE,PE交邊BC于點(diǎn)F,連接BE,DF.

Cl)求NPBE的度數(shù);

Ap

(2)若APFDs^BFP,求——的值.

AB

參考答案

1.WCD//AB

(2)見(jiàn)解析

【分析】(1)根據(jù)垂直于同一直線(xiàn)的兩條直線(xiàn)互相平行,即可得出結(jié)論;

(2)方艮據(jù)NFDC=NEBA可得NCDM—NFDC=ZABM—NEBA,則NFDM=N£&0,即

可求證.

【詳解】(1)解::CD1MN,

:.CD//AB.

(2)證明:ZFDC=ZEBA,ZCDM=ZABM=90°,

Z.CDM-ZFDC=ZABM-ZEBA(等式的性質(zhì)),

即NFDM=NEBM,

DF//BE(同位角相等,兩直線(xiàn)平行).

【點(diǎn)睛】本題主要考查了平行線(xiàn)的判定,解題的關(guān)鍵是掌握垂直于同一直線(xiàn)的兩條直線(xiàn)互相

平行,同位角相等,兩直線(xiàn)平行.

2.見(jiàn)解析

【分析】根據(jù)等腰三角形的定義,即可進(jìn)行解答.

【詳解】解:??,4B=AC,

;.VABC為等腰三角形,

VABC中,腰:A3和AC,底邊:BC,頂角為/A;

?/AD=BD,

A/MB為等腰三角形,

中,腰:AO和8£>,底邊:AB,頂角為/ADB.

【點(diǎn)睛】本題主要考查了等腰三角形的相關(guān)定義,解題的關(guān)鍵是掌握在等腰三角形中,相等

的兩條邊為腰,另外一條邊為底邊,底邊所對(duì)的角為頂角.

3.(1)見(jiàn)解析

(2)見(jiàn)解析

⑶■

【分析】(1)在方格中找出點(diǎn)8關(guān)于點(diǎn)C的對(duì)稱(chēng)點(diǎn)點(diǎn)。,連接即可;

(2)利用旋轉(zhuǎn)變換的性質(zhì)作圖即可;

DT

(3)過(guò)點(diǎn)A作ATLDE于7,求出AD,DT,則cosZADE=—.

AD

【詳解】(1)如圖,線(xiàn)段AO即為所求.

(2)如圖,線(xiàn)段AE即為所求.

(3)解:如圖,過(guò)點(diǎn)A作ATLQE于T.

?:AE=ADf

:.DT=ET=

2

DT叵.

cosZADE=-----

ADIF

故答案為:正.

10

【點(diǎn)睛】本題考查了作圖一一翻折變換、旋轉(zhuǎn)變換,勾股定理和解直角三角形等知識(shí)點(diǎn),解

題關(guān)鍵是利用數(shù)形結(jié)合思想構(gòu)造含NAZ)后的直角三角形.

4.135°

【分析】根據(jù)角平分線(xiàn)的性質(zhì),ZAEF=ZDEF=|ZAED,ZBCF=ZDCF=|NBCD,再

根據(jù)五邊形內(nèi)角和求出NAED+/BCD的值,可得到/D跖+/OCF的值,再利用四邊形內(nèi)

角和為360。即可求出/E/C的度數(shù).

【詳解】解::斯平分NAED,CF平分NBCD,

:.ZAEF=ZDEF=-ZAED,ZBCF=ZDCF=-/BCD.

22

?/AE//BC,

:.ZA+ZB=180°.

:五邊形的內(nèi)角和為(5-2)xl80°=540°,ID90?,

/.ZAED+ZBCD=540°-(ZA+/3+ZD)=540°-(180°+90°)=270°,

即NDEF+ZDCF=-(NAED+ZBCD)=1x270°=135°,

,/四邊形EFBD內(nèi)角和為360°,

ZEFC=360°—(ZD+ZDEF+ZDCF)=360°-(90°+135°)=135°.

【點(diǎn)睛】本題考查了角平分線(xiàn)和多邊形內(nèi)角和,能熟練運(yùn)用角平分線(xiàn)與多邊形內(nèi)角和求角的

度數(shù)是解題的關(guān)鍵.

5.⑴見(jiàn)解析

(2)5

【分析】(1)利用AAS即可證明AABE四△AOF;

(2)設(shè)菱形的邊長(zhǎng)為X,利用全等三角形的性質(zhì)得到3年以。-2,在MAA8E中,利用勾

股定理列方程求解即可.

【詳解】(1)證明:???四邊形是菱形,

:.AB=BC=CD=AD(菱形的四條邊相等),/B=/D(菱形的對(duì)角相等),

\"AE_LBCAFLCD,

:.ZAEB=ZAFD=90°(垂直的定義),

在母42£和AAZ)產(chǎn)中,

ZEB=NAFD

<ZB=ZD,

AB=AD

:.AAB£^AADF(AAS);

(2)解:設(shè)菱形的邊長(zhǎng)為x,

AB=CD=x,CF=2,

:?DF=x~~2,

AABE^AADF,

:.BE=DF=x-2(全等三角形的對(duì)應(yīng)邊相等),

在RfAABE中,ZAEB=9Q°,

...4£2+跳;2=&爐(勾股定理),

42+(x-2)2=x2,

解得x=5,

菱形的邊長(zhǎng)是5.

【點(diǎn)睛】本題主要考查菱形的性質(zhì)、勾股定理,解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)

題.

6.⑴高為10cm;(2)展開(kāi)圖的周長(zhǎng)為180cm.

【詳解】【分析】(1)由紙盒底面積推出每個(gè)小正方形的面積,再求小正方形的邊長(zhǎng);(2)

根據(jù)所求的正方形邊長(zhǎng)和展開(kāi)圖形可求得答案.

【詳解】(1)因?yàn)?,紙盒的底面是由六個(gè)小正方形組成,

所以,每個(gè)小正方形的面積是萼=100(cm2).

所以,每個(gè)小正方形的邊長(zhǎng)為10cm.

所以,高為10cm.

(2)展開(kāi)圖的周長(zhǎng)為18x10=180(cm).

【點(diǎn)睛】本題考核知識(shí)點(diǎn):展開(kāi)圖的面積.解題關(guān)鍵點(diǎn):理解立體圖形展開(kāi)圖的意義,求出

小正方形的面積是關(guān)鍵.

7.20°

【分析】根據(jù)平行線(xiàn)的性質(zhì)求出/BCE的度數(shù),根據(jù)角平分線(xiàn)的性質(zhì)求出/BCN的度數(shù),

然后根據(jù)垂直的定義求出NBCM.

【詳解】解::AB//CD,ZB=40,

:.ZBCE=1800-ZB=180°-40°=140°,

:CN是23CE的平分線(xiàn),

NBCN=-NBCE=-xl40°=70°,

22

■:CMLCN,

NBCM=20°.

【點(diǎn)睛】本題主要考查了平行線(xiàn)的性質(zhì)、角平分線(xiàn)的定義和垂直的定義,熟知兩直線(xiàn)平行,

同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ)是解題關(guān)鍵.

8.(1)見(jiàn)解析

(2)Q4=OD,理由見(jiàn)解析

【分析】(1)根據(jù)HL可證明

(2)根據(jù)AAS證明AAMO^DNO可得結(jié)論.

【詳解】(1)證明::BN=CM,

BN+MN=MN+CM,

^CN=BM,

VAMLBC,DNIBC,

ZAMB=ZDNC=90°,

在RIAABM和RgDCN中,

jABCD

[BM=CN,

RtAABM^RtADav(HL);

(2)解:OA^OD,理由如下:

?/AABMdDCN,

:.AM=DN,

ZAOM=ZDNO

在^AMO和ADNO中,ZAMO=ZDNO,

AM=DN

:.△AMO四△DNO(AAS),

OA=OD.

【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,熟練掌握全等三角形的判定定理是解題的關(guān)

鍵.

9.(1)見(jiàn)解析

(2)120°

【分析】(1)由題意可知,OE為線(xiàn)段3C的垂直平分線(xiàn),則。EL3C,CD=BD,CE=BE,

根據(jù)等腰三角的性質(zhì)可得由平行線(xiàn)的性質(zhì)可得進(jìn)而可得

NCED=/CDE,BPCD=CE,貝!JCD=3D=CE=3E,由此即可證明.

(2)由菱形的性質(zhì)可得CE=DE,進(jìn)而可得ACDE為等邊三角形,即/CED=60。,由(1)

知,四邊形CEB。是菱形,則根據(jù)/CEB=/CED+/3ED即可得答案.

【詳解】(1)證明:由題意可知,DE為線(xiàn)段BC的垂直平分線(xiàn),

:.DELBC,CD=BD,CE=BE,

.:NCDE=/BDE,

■.■CE//AB,

.-.ZCED=ZBDE,

/CED=/CDE,

.:CD=CE,

CD=BD=CE=BE,

.??四邊形CEBD是菱形.

(2)解:?.?四邊形ACED是菱形,

CE-DE,

CE=DE=CD,

即ACDE為等邊三角形,

:.NCED=60。,

由(1)知,四邊形CEBD是菱形,

../CED=/BED,

:.NBED=60。,

:.NCEB=NCED+/BED=12。。.

【點(diǎn)睛】本題考查尺規(guī)作圖、線(xiàn)段垂直平分線(xiàn)的性質(zhì)、菱形的判定與性質(zhì),熟練掌握線(xiàn)段垂

直平分線(xiàn)的性質(zhì)和作圖方法,以及菱形的判定與性質(zhì)是解答本題的關(guān)鍵.

10.2-72

【分析】本題主要考查了正方形的性質(zhì),翻折的性質(zhì),以及角平分線(xiàn)的性質(zhì),用兩種方法表

示AOCD的面積是解題的關(guān)鍵.過(guò)點(diǎn)M作于根據(jù)翻折得NCD尸=NC?尸,從

而有OM=MH,利用S《Do=SqODM+S&DM,代入計(jì)算即可得出答案.

【詳解】解:過(guò)點(diǎn)M作于V,

,?,將正方形ABCD沿直線(xiàn)OF折疊,點(diǎn)C落在對(duì)角線(xiàn)8。上的點(diǎn)E處,

:.ZCDF=ZODF,

???四邊形是正方形,

:.AC1.BD,/ODC=45°,

ZCDF=ZODF,ACJ.BD,MHLCD,

OM=HM,

-CD=2,

:.OD=y/2,

-

..0ACOOQAODMTD《DM,

—x5/2xy/2=—xy/2xMO+—x2xMH,

222

解得M〃=2—a-

11.15cm

【分析】本題考查了三角形中位線(xiàn)的性質(zhì),平行四邊形的性質(zhì),三角形相似的判定和性質(zhì),

取AC中點(diǎn)連接可得即為VABC的中位線(xiàn),得到EH//BC,再由

9

平行四邊形的性質(zhì)得到£H=3cm,EH//DA,即可得△G"Es2^G4F,得到GH=ecm,

即得AH=AG+G"=?cm,據(jù)此即可求解,正確作出輔助線(xiàn)是解題的關(guān)鍵.

【詳解】解:如圖,取AC中點(diǎn)H,連接

AE

為4B的中點(diǎn),H為AC的中點(diǎn),

為VABC的中位線(xiàn),

AEH=-BC,EH//BC,

2

*.*AF=2cm,DF=4cm,

AD=AF+DF=6cm,

???四邊形ABC。是平行四邊形,

BC=AD=6cmfAD//BC,

EH=—x6=3cm,

2

VEH//BC,AD//BC,

:.EH//DA,

:.^GHE^GAF,

.GHEH

??=,

GAFA

目口GH3

即——=-,

32

9

???GH=-cm,

2

915

:.AH=AG+GH=3+-=—cm,

22

???AC=2AH=15cm.

12.5C的長(zhǎng)是10.

【分析】根據(jù)平行四邊形的性質(zhì)求得AB=CD,AD=BC,再根據(jù)題意求得平行四邊形的周長(zhǎng),

進(jìn)而可得AB+BC=;?3216,繼而即可求解.

【詳解】:四邊形ABCD是平行四邊形,

;.AB=CD,AD=BC,

3

???AB=6,且AB的長(zhǎng)是四邊形ABCD周長(zhǎng)的二,

16

3

二?四邊形ABCD周長(zhǎng)為:64—=32,

16

.'.AB+BC=-?3216,

2

8C=16—AB=16—6=10.

答:8C的長(zhǎng)是10.

【點(diǎn)睛】本題考查平行四邊形的性質(zhì)的應(yīng)用,解題的關(guān)鍵是熟練掌握平行四邊形對(duì)邊平行且

相等.

13.(1)?=|

(2)四邊形或WDN的面積不變,其面積為16,理由見(jiàn)解析

gNDNM=ZADN+NBMN,理由見(jiàn)解析

【分析】(1)分別用含f的式子表示和BN,再建立方程求解即可;

(2)將長(zhǎng)方形面積減去兩個(gè)三角形面積即可得到四邊形3MZW的面積,最后為一個(gè)常數(shù),

即可求解;

(3)過(guò)點(diǎn)N作NP〃AD,利用平行線(xiàn)的性質(zhì)即可得到它們之間的關(guān)系.

【詳解】⑴由題意知,BN=t,CM=2t

":BC=8,

BM=S-2t,

?/BM=BN,

t=8—2t,

Q

解得

(2)四邊形氏WDN的面積不變,

理由如下:

:四邊形ABC。是矩形,

CD=AB=4,AD=BC=8,

AN=AB-BN=4-t,

=

??S四邊形BMDNS矩形ABC?!猄jDN-^CDM

^ABBC--ADAN--CDCM

22

=4x8-gx8x(4_')—;x4x2.

=32—16+4,—4%

=16,

,四邊形的面積不變,其面積為16.

(3)如圖,過(guò)點(diǎn)N作NP〃AD,

則NADN=/DNP,

:四邊形ABC。是長(zhǎng)方形,

AD//BC,

:.NP//BC,

:.ZBMN=ZMNP,

則ZDNM=NDNP+ZMNP=ZADN+ZBMN,

即ZDNM=ZADN+ZBMN.

【點(diǎn)睛】本題為動(dòng)點(diǎn)問(wèn)題,涉及到了整式加減的應(yīng)用、一元一次方程的應(yīng)用、平行線(xiàn)的性質(zhì),

解題關(guān)鍵是能列出代數(shù)式對(duì)相關(guān)的線(xiàn)段進(jìn)行表示,并能根據(jù)它們的關(guān)系建立方程求解.

14.2岳.

【分析】

由cosZABC^-得到ZEAG=ZABC=60°,由AF為菱形對(duì)角線(xiàn)得到AF平分ZEAG,求

2

得NBA尸=90。.已知AB=AT>=5,所以在中只要求出AF即能求出郎.又因?yàn)锳F

為菱形對(duì)角線(xiàn)且已知菱形邊長(zhǎng)為3,連接另一對(duì)角線(xiàn)EG,根據(jù)對(duì)角線(xiàn)互相垂直平分且

ZFAG=30°即能求出BF.

【詳解】解:連接EG,交AF于點(diǎn)。,

?.?四邊形3G為菱形,

EGAAF,AF=2OA,AF平分NEAG,

:四邊形ABCD為菱形,cosZABC=-,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論