




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)重慶財(cái)經(jīng)學(xué)院《綜合設(shè)計(jì)-中式元素視覺傳達(dá)》
2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的行人重識(shí)別任務(wù)中,假設(shè)要在多個(gè)攝像頭拍攝的畫面中找到同一個(gè)行人。以下關(guān)于特征融合的方法,哪一項(xiàng)是不太合理的?()A.將行人的外觀特征和步態(tài)特征進(jìn)行融合B.簡(jiǎn)單地將不同特征進(jìn)行拼接,不考慮權(quán)重分配C.根據(jù)特征的重要性為其分配不同的權(quán)重進(jìn)行融合D.利用深度學(xué)習(xí)模型自動(dòng)學(xué)習(xí)特征的融合方式2、計(jì)算機(jī)視覺中的車牌識(shí)別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個(gè)高速公路收費(fèi)站實(shí)現(xiàn)準(zhǔn)確的車牌識(shí)別,以下關(guān)于車牌識(shí)別方法的描述,正確的是:()A.基于邊緣檢測(cè)和字符分割的方法對(duì)車牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識(shí)別出字符,但對(duì)車牌的傾斜和光照不均敏感C.車牌識(shí)別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無(wú)法正常運(yùn)行D.車牌識(shí)別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無(wú)關(guān)3、在計(jì)算機(jī)視覺的行人重識(shí)別任務(wù)中,即在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強(qiáng)的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述4、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像超分辨率重建任務(wù),將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種深度學(xué)習(xí)模型可能在重建效果上表現(xiàn)出色?()A.SRCNNB.ESPCNC.DRCND.以上都是5、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對(duì)一張受到嚴(yán)重噪聲污染的圖像進(jìn)行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時(shí)很好地保留圖像的細(xì)節(jié)B.中值濾波對(duì)椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會(huì)引入任何新的失真或模糊6、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型7、當(dāng)進(jìn)行圖像的風(fēng)格遷移任務(wù)時(shí),假設(shè)要將一張照片的風(fēng)格轉(zhuǎn)換為著名繪畫的風(fēng)格,同時(shí)保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實(shí)現(xiàn)這一目標(biāo)時(shí)可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移算法,如Gatys等人提出的方法B.對(duì)圖像進(jìn)行簡(jiǎn)單的色彩變換和濾鏡處理C.隨機(jī)改變圖像的像素值來(lái)模擬風(fēng)格遷移D.只對(duì)圖像的邊緣進(jìn)行處理,忽略內(nèi)部區(qū)域8、在計(jì)算機(jī)視覺的視覺跟蹤與定位任務(wù)中,實(shí)時(shí)跟蹤物體并確定其在空間中的位置。假設(shè)要在一個(gè)室內(nèi)環(huán)境中跟蹤一個(gè)移動(dòng)的機(jī)器人并確定其位置,以下關(guān)于視覺跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時(shí)仍能準(zhǔn)確工作B.視覺里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長(zhǎng)期跟蹤與定位C.同時(shí)使用多個(gè)相機(jī)進(jìn)行觀測(cè)不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動(dòng)態(tài)障礙物對(duì)視覺跟蹤與定位的結(jié)果影響較小9、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志、車輛和行人。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺的描述,哪一項(xiàng)是不正確的?()A.計(jì)算機(jī)視覺可以通過攝像頭實(shí)時(shí)獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識(shí)別不同光照和天氣條件下的交通對(duì)象,不受任何干擾C.深度學(xué)習(xí)算法在自動(dòng)駕駛的計(jì)算機(jī)視覺中被廣泛應(yīng)用,用于目標(biāo)檢測(cè)和語(yǔ)義分割D.計(jì)算機(jī)視覺需要與其他傳感器(如雷達(dá)、激光雷達(dá))的數(shù)據(jù)融合,以提高感知的可靠性10、在計(jì)算機(jī)視覺的表情識(shí)別任務(wù)中,判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情識(shí)別方法的描述,哪一項(xiàng)是不正確的?()A.可以通過分析面部肌肉的運(yùn)動(dòng)和特征點(diǎn)的變化來(lái)識(shí)別表情B.深度學(xué)習(xí)模型能夠?qū)W習(xí)不同表情的模式和特征,實(shí)現(xiàn)準(zhǔn)確的表情分類C.表情識(shí)別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識(shí)別可以準(zhǔn)確地識(shí)別出所有細(xì)微和復(fù)雜的表情,不受個(gè)體差異和文化背景的影響11、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,例如對(duì)腫瘤的檢測(cè)和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)12、計(jì)算機(jī)視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力13、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測(cè)行人或車輛。假設(shè)我們要開發(fā)一個(gè)目標(biāo)檢測(cè)系統(tǒng),以下關(guān)于目標(biāo)檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過生成候選區(qū)域并對(duì)其進(jìn)行分類和定位來(lái)實(shí)現(xiàn)目標(biāo)檢測(cè)B.一階段目標(biāo)檢測(cè)算法,如YOLO和SSD,直接在圖像上進(jìn)行目標(biāo)的分類和定位,速度相對(duì)較快C.目標(biāo)檢測(cè)算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來(lái)評(píng)估D.目標(biāo)檢測(cè)算法的精度和速度是相互獨(dú)立的,提高精度不會(huì)影響速度,反之亦然14、在計(jì)算機(jī)視覺的人臉識(shí)別任務(wù)中,假設(shè)要在一個(gè)大型數(shù)據(jù)庫(kù)中快速準(zhǔn)確地識(shí)別出特定人物的面部。數(shù)據(jù)庫(kù)中的人臉圖像可能存在表情、光照和姿態(tài)的變化。為了提高人臉識(shí)別的性能,以下哪種方法是常用且有效的?()A.提取人臉的全局特征,如整體形狀和輪廓B.僅關(guān)注人臉的局部特征,如眼睛和嘴巴C.使用多模態(tài)數(shù)據(jù),結(jié)合人臉的紋理和深度信息D.隨機(jī)選擇人臉特征進(jìn)行匹配15、計(jì)算機(jī)視覺中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對(duì)一個(gè)古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過立體視覺的方法,從不同角度拍攝的圖像中計(jì)算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點(diǎn)云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實(shí)物體的形狀完全一致16、計(jì)算機(jī)視覺中的深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的遠(yuǎn)近。假設(shè)要為機(jī)器人導(dǎo)航提供深度信息,以下關(guān)于深度估計(jì)方法的精度要求,哪一項(xiàng)是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級(jí)別的深度信息,確保機(jī)器人安全導(dǎo)航C.深度估計(jì)的精度對(duì)機(jī)器人導(dǎo)航影響不大,可以忽略D.精度要求取決于機(jī)器人的運(yùn)動(dòng)速度,速度越快要求精度越低17、計(jì)算機(jī)視覺中的圖像增強(qiáng)技術(shù)可以改善圖像質(zhì)量。假設(shè)要對(duì)一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.簡(jiǎn)單地增加圖像的亮度就能有效改善低光照?qǐng)D像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強(qiáng)圖像對(duì)比度C.基于深度學(xué)習(xí)的圖像增強(qiáng)方法能夠自適應(yīng)地學(xué)習(xí)到適合的增強(qiáng)策略D.圖像增強(qiáng)不會(huì)改變圖像的原始信息和內(nèi)容18、在計(jì)算機(jī)視覺的圖像去霧任務(wù)中,假設(shè)要去除一張有霧圖像中的霧氣,恢復(fù)清晰的場(chǎng)景。以下關(guān)于圖像去霧方法的描述,正確的是:()A.基于物理模型的去霧方法需要準(zhǔn)確估計(jì)霧的濃度和傳播參數(shù),否則效果不佳B.基于深度學(xué)習(xí)的去霧方法能夠自動(dòng)學(xué)習(xí)霧的特征,但對(duì)濃霧的處理能力有限C.圖像去霧后,顏色和對(duì)比度會(huì)發(fā)生嚴(yán)重失真,影響視覺效果D.所有的圖像去霧方法都能夠在各種復(fù)雜的霧天條件下取得理想的效果19、計(jì)算機(jī)視覺在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以輔助飛行和導(dǎo)航。假設(shè)一架UAV需要依靠視覺信息避開障礙物,以下關(guān)于UAV計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠單目視覺就能準(zhǔn)確估計(jì)障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學(xué)習(xí)算法的結(jié)合可以為UAV提供更準(zhǔn)確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對(duì)視覺系統(tǒng)的性能沒有影響20、計(jì)算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細(xì)節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時(shí)要保持圖像的自然度和真實(shí)性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學(xué)習(xí)的方法D.基于學(xué)習(xí)字典的方法二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)描述計(jì)算機(jī)視覺在泥石流預(yù)警中的應(yīng)用。2、(本題5分)描述計(jì)算機(jī)視覺在海岸帶監(jiān)測(cè)中的應(yīng)用。3、(本題5分)描述計(jì)算機(jī)視覺在雪崩預(yù)警中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)觀察某電子產(chǎn)品品牌的產(chǎn)品發(fā)布會(huì)視頻設(shè)計(jì),闡述其如何通過視覺效果和演講內(nèi)容展示新產(chǎn)品的特點(diǎn)和創(chuàng)新。2、(本題5分)以一個(gè)科技公司的年度報(bào)告設(shè)計(jì)為例,分析其如何運(yùn)用視覺元素傳達(dá)公司業(yè)績(jī)和發(fā)展戰(zhàn)略。3、(本題5分)以特斯拉汽車的自動(dòng)駕駛功能廣告為例,分析其如何通過視覺傳達(dá)展現(xiàn)科技創(chuàng)新和未來(lái)出行的愿景。討論廣告中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物技術(shù)藥物研發(fā)合同
- 私人訂制戶外探險(xiǎn)活動(dòng)服務(wù)協(xié)議
- 智能家居系統(tǒng)與節(jié)能照明合作協(xié)議
- 數(shù)據(jù)挖掘技術(shù)在企業(yè)決策支持系統(tǒng)中的應(yīng)用合作協(xié)議
- 精密電子元器件采購(gòu)合同
- 離婚標(biāo)準(zhǔn)協(xié)議書車輛分配
- 裝修公司合同保密協(xié)議
- 信用社借款展期合同協(xié)議書
- 教育培訓(xùn)合作項(xiàng)目實(shí)施協(xié)議
- 建筑施工臨時(shí)承包合同
- 新入職員工廉政談話
- 2024云南中考數(shù)學(xué)二輪專題復(fù)習(xí) 題型五 二次函數(shù)性質(zhì)綜合題(課件)
- JB∕T 9006-2013 起重機(jī) 卷筒標(biāo)準(zhǔn)規(guī)范
- 家庭法律服務(wù)行業(yè)市場(chǎng)突圍建議書
- 高一數(shù)學(xué)同步優(yōu)品講練課件(人教A版2019必修第一冊(cè))3.2 函數(shù)的基本性質(zhì)(課時(shí)3 函數(shù)的奇偶性)(課件)
- 太平洋保險(xiǎn)計(jì)劃書模板
- 2024年廣東省中考生物+地理試卷(含答案)
- 智能化弱電工程技術(shù)方案(完整)
- 有關(guān)煤礦生產(chǎn)新技術(shù)、新工藝、新設(shè)備和新材料及其安全技術(shù)要求課件
- DZ∕T 0201-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 鎢、錫、汞、銻(正式版)
- 產(chǎn)科臨床診療指南
評(píng)論
0/150
提交評(píng)論