![北京戲曲藝術職業(yè)學院《品牌形象識別設計》2023-2024學年第二學期期末試卷_第1頁](http://file4.renrendoc.com/view15/M01/0C/26/wKhkGWepfZ-AFWgDAAMhC9g0OFU496.jpg)
![北京戲曲藝術職業(yè)學院《品牌形象識別設計》2023-2024學年第二學期期末試卷_第2頁](http://file4.renrendoc.com/view15/M01/0C/26/wKhkGWepfZ-AFWgDAAMhC9g0OFU4962.jpg)
![北京戲曲藝術職業(yè)學院《品牌形象識別設計》2023-2024學年第二學期期末試卷_第3頁](http://file4.renrendoc.com/view15/M01/0C/26/wKhkGWepfZ-AFWgDAAMhC9g0OFU4963.jpg)
![北京戲曲藝術職業(yè)學院《品牌形象識別設計》2023-2024學年第二學期期末試卷_第4頁](http://file4.renrendoc.com/view15/M01/0C/26/wKhkGWepfZ-AFWgDAAMhC9g0OFU4964.jpg)
![北京戲曲藝術職業(yè)學院《品牌形象識別設計》2023-2024學年第二學期期末試卷_第5頁](http://file4.renrendoc.com/view15/M01/0C/26/wKhkGWepfZ-AFWgDAAMhC9g0OFU4965.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁北京戲曲藝術職業(yè)學院《品牌形象識別設計》
2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的全景圖像拼接是將多個視角的圖像組合成一個全景圖像。假設我們有一組用普通相機拍攝的場景照片,要拼接成一個無縫的全景圖,以下哪個步驟對于拼接的質(zhì)量影響最大?()A.特征點提取和匹配B.圖像融合和過渡處理C.相機參數(shù)估計和校正D.圖像的裁剪和縮放2、計算機視覺在醫(yī)學圖像分析中有著重要作用。假設要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關于模型訓練中數(shù)據(jù)標注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標注B.眼底圖像的質(zhì)量參差不齊,影響標注準確性C.標注人員的醫(yī)學知識不足,導致標注錯誤D.數(shù)據(jù)量過大,標注工作耗時費力3、計算機視覺中的圖像配準任務是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設要將兩張拍攝角度不同的城市風景照片進行配準。以下關于圖像配準方法的描述,哪一項是不正確的?()A.可以基于特征點匹配的方法,找到兩張圖像中的對應點,然后計算變換矩陣B.基于灰度信息的配準方法通過比較圖像的像素值來實現(xiàn)配準C.深度學習中的自監(jiān)督學習方法可以用于圖像配準,自動學習圖像之間的對應關系D.圖像配準總是能夠達到像素級別的精確對齊,不存在任何誤差4、在計算機視覺的全景圖像拼接任務中,假設要將多張拍攝的局部圖像拼接成一幅完整的全景圖。以下關于圖像匹配和融合的步驟,哪一項是容易出錯的?()A.準確找到相鄰圖像之間的特征點進行匹配B.對匹配后的圖像進行幾何校正和投影變換C.直接將圖像拼接在一起,不進行任何過渡處理D.采用合適的融合算法,消除拼接處的明顯痕跡5、計算機視覺中的表情識別用于分析人臉的表情狀態(tài)。假設要在一個在線教育平臺中檢測學生的學習狀態(tài)。以下關于表情識別的描述,哪一項是不正確的?()A.可以通過提取面部肌肉的運動特征來判斷表情B.深度學習中的卷積神經(jīng)網(wǎng)絡能夠自動學習表情的特征表示C.表情識別能夠準確區(qū)分細微的表情變化,如困惑和專注D.表情識別不受面部遮擋和光照變化的影響,始終能夠準確判斷6、當進行圖像的風格遷移任務時,假設要將一張照片的風格轉(zhuǎn)換為著名繪畫的風格,同時保留照片的內(nèi)容結構。以下哪種方法在實現(xiàn)這一目標時可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡的風格遷移算法,如Gatys等人提出的方法B.對圖像進行簡單的色彩變換和濾鏡處理C.隨機改變圖像的像素值來模擬風格遷移D.只對圖像的邊緣進行處理,忽略內(nèi)部區(qū)域7、在計算機視覺中,人臉檢測和識別是重要的應用方向。以下關于人臉檢測和識別的說法,不正確的是()A.人臉檢測旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識別是在檢測到人臉的基礎上,對人臉的身份進行識別和驗證C.深度學習方法在人臉檢測和識別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測和識別技術已經(jīng)非常成熟,不存在任何錯誤率和安全隱患8、在計算機視覺中,深度估計是確定場景中物體距離相機的距離。以下關于深度估計的說法,錯誤的是()A.可以通過立體視覺、結構光或飛行時間等技術來獲取深度信息B.深度學習方法在單目深度估計中取得了顯著進展C.深度估計對于三維重建、虛擬現(xiàn)實和增強現(xiàn)實等應用具有重要意義D.深度估計的結果總是非常精確,不需要進行后處理和優(yōu)化9、當利用計算機視覺進行圖像檢索任務,例如在海量圖像庫中查找相似的圖像,以下哪種圖像表示方法可能對檢索效果產(chǎn)生重要影響?()A.全局特征B.局部特征C.深度學習特征D.以上都是10、在計算機視覺的圖像檢索任務中,需要根據(jù)用戶提供的查詢圖像找到相似的圖像。假設我們有一個大型的圖像數(shù)據(jù)庫,以下哪種圖像表示方法能夠提高圖像檢索的效率和準確性?()A.基于全局特征的圖像表示B.基于局部特征的圖像表示C.基于深度學習的圖像嵌入表示D.基于顏色直方圖的圖像表示11、在計算機視覺的目標檢測中,對于小目標的檢測往往具有較大的挑戰(zhàn)性。為了提高小目標檢測的準確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓練數(shù)據(jù)中的小目標樣本C.使用更高分辨率的輸入圖像D.以上都是12、在計算機視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關的圖像。以下關于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學習方法可以學習到更具語義的圖像表示,提高圖像檢索的準確性C.圖像檢索在電子商務、數(shù)字圖書館和圖像搜索引擎等領域有廣泛的應用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關13、在計算機視覺的圖像生成任務中,假設要生成具有真實感的自然圖像。以下關于圖像生成方法的描述,正確的是:()A.生成對抗網(wǎng)絡(GAN)能夠生成逼真的圖像,但訓練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像14、在計算機視覺的圖像檢索任務中,根據(jù)用戶提供的圖像或特征在數(shù)據(jù)庫中查找相似的圖像。假設要從一個大型圖像庫中找到與給定圖像相似的圖片,以下關于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進行檢索能夠滿足所有的檢索需求B.深度學習中的卷積神經(jīng)網(wǎng)絡提取的特征在圖像檢索中不如手工設計的特征有效C.考慮圖像的語義信息和高層特征可以提高圖像檢索的準確性和相關性D.圖像檢索的速度和效率不受數(shù)據(jù)庫大小和特征維度的影響15、在計算機視覺的圖像超分辨率重建中,假設我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學習架構可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(RNN)C.生成對抗網(wǎng)絡(GAN)D.自動編碼器(Autoencoder)16、目標檢測是計算機視覺中的重要任務之一。假設要在一張城市街道的圖像中檢測出所有的行人和車輛,以下關于目標檢測算法的描述,正確的是:()A.基于傳統(tǒng)的圖像處理方法的目標檢測算法在復雜場景中表現(xiàn)優(yōu)于深度學習算法B.深度學習中的單階段目標檢測算法比兩階段算法速度快,但精度較低C.目標檢測算法只需要關注目標的位置,不需要考慮目標的類別D.目標檢測的準確率不受圖像質(zhì)量、光照條件和目標大小變化的影響17、在計算機視覺領域中,當需要對監(jiān)控視頻中的行人進行實時檢測和跟蹤,以實現(xiàn)智能安防系統(tǒng)的功能時,以下哪種方法在處理復雜場景和多目標跟蹤方面可能表現(xiàn)更為出色?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學習的目標檢測算法C.基于特征匹配的跟蹤算法D.基于光流法的跟蹤算法18、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有重要作用。假設要在VR環(huán)境中實現(xiàn)真實感的物體交互,以下哪種技術可能對準確感知物體的位置和姿態(tài)至關重要?()A.立體視覺B.光場成像C.結構光D.運動捕捉19、計算機視覺中的圖像增強技術可以改善圖像質(zhì)量。假設要對一張低光照條件下拍攝的圖像進行增強,以下關于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學習的圖像增強方法能夠自適應地學習到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容20、在計算機視覺的醫(yī)學圖像分析中,輔助醫(yī)生進行疾病診斷。假設要通過分析CT圖像檢測腫瘤的位置和大小,以下關于醫(yī)學圖像計算機視覺應用的描述,正確的是:()A.計算機視覺算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進一步判斷B.不同患者的個體差異和掃描參數(shù)的變化對腫瘤檢測結果沒有影響C.結合醫(yī)生的先驗知識和計算機視覺技術能夠提高腫瘤檢測的準確性和可靠性D.醫(yī)學圖像中的噪聲和偽影對計算機視覺算法的性能沒有影響21、圖像分類是計算機視覺的常見任務之一。假設要對大量的自然風景圖片進行分類,如山脈、森林、海灘等。在進行圖像分類時,以下關于數(shù)據(jù)增強的方法,哪一項可能不太有效?()A.對圖像進行隨機裁剪和旋轉(zhuǎn),增加數(shù)據(jù)的多樣性B.改變圖像的色彩和對比度,模擬不同的拍攝條件C.直接復制原圖像,增加數(shù)據(jù)量D.給圖像添加隨機噪聲,增強模型的魯棒性22、圖像分割是將圖像細分為不同的區(qū)域或?qū)ο?。假設我們需要對醫(yī)學圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學習的語義分割算法,如U-Net23、在計算機視覺的人臉識別任務中,假設要實現(xiàn)一個能夠在不同光照和表情下準確識別的系統(tǒng)。以下關于數(shù)據(jù)預處理的步驟,哪一項是最重要的?()A.對人臉圖像進行歸一化處理,統(tǒng)一大小和亮度B.對圖像進行銳化處理,增強面部特征C.給圖像添加藝術效果,提高美觀度D.隨機裁剪圖像,增加數(shù)據(jù)多樣性24、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學習的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像25、在計算機視覺的應用中,人臉識別是一個常見的任務。假設一個公司要建立一個門禁系統(tǒng),通過人臉識別來允許員工進入。為了提高人臉識別的準確性和魯棒性,以下哪種技術通常會被采用?()A.基于幾何特征的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別,結合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識別26、在計算機視覺的三維重建任務中,例如從多視角圖像恢復物體的三維形狀,需要解決相機位姿估計、特征匹配等問題。以下哪種方法在相機位姿估計方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點的方法D.基于深度學習的方法27、計算機視覺中的光流計算用于估計圖像中像素的運動。假設要在一個動態(tài)場景中準確計算光流,以下哪種情況可能導致較大的誤差?()A.物體的快速運動B.光照的劇烈變化C.圖像的低分辨率D.以上都有可能28、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關于模型訓練的挑戰(zhàn),哪一項是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數(shù)據(jù)用于訓練B.模型的訓練時間過長,難以在短時間內(nèi)得到結果C.難以評估重建后的圖像質(zhì)量,沒有明確的標準D.計算資源需求過大,普通計算機難以承受29、在計算機視覺的視覺跟蹤與監(jiān)控應用中,需要對特定目標進行持續(xù)的跟蹤和監(jiān)測。假設要對一個在大型商場中移動的可疑人員進行跟蹤,同時要應對人群遮擋和環(huán)境變化。以下哪種視覺跟蹤與監(jiān)控技術在這種情況下能夠提供更可靠的跟蹤結果?()A.多目標跟蹤算法B.基于深度學習的單目標跟蹤C.基于粒子濾波的跟蹤D.基于特征匹配的跟蹤30、在計算機視覺的立體視覺中,需要通過兩個或多個相機獲取的圖像來計算深度信息。假設要為一個自動駕駛汽車構建立體視覺系統(tǒng),以測量與前方障礙物的距離,同時要考慮實時性和準確性的要求。以下哪種立體匹配算法在這種應用場景中表現(xiàn)最優(yōu)?()A.基于區(qū)域的匹配B.基于特征的匹配C.基于深度學習的匹配D.全局優(yōu)化匹配二、應用題(本大題共5個小題,共25分)1、(本題5分)利用圖像識別技術,對藥品包裝上的藥品信息進行識別和核對。2、(本題5分)設計一個程序,通過計算機視覺識別不同品牌的打印機。3、(本題5分)開發(fā)一個能夠識別不同種類爬行動物的程序。4、(本題5分)設計一個系統(tǒng),利用計算機視覺檢測建筑工地的安全隱患。5、(本題5分)對音樂MV中的舞蹈表演和音樂節(jié)奏的配合度進行評估。三、簡答題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)咨詢業(yè)務合作合同范本
- 創(chuàng)意廣告合同范例
- 企業(yè)公司融資合同范本
- 艙口蓋系統(tǒng)行業(yè)深度研究報告
- 化肥長期供貨合同范本
- 場地使用出租合同范本
- 事業(yè)單位聘用合同范本
- 共享叉車租賃合同范例
- 副食購買合同范本
- 充電樁維修合同范本
- 戰(zhàn)略管理與倫理
- 如何構建高效課堂課件
- 虛擬化與云計算技術應用實踐項目化教程 教案全套 第1-14周 虛擬化與云計算導論-騰訊云服務
- 甲基丙烯酸甲酯生產(chǎn)工藝畢業(yè)設計設備選型與布置模板
- 徐金桂行政法與行政訴訟法新講義
- 瀝青拌合設備結構認知
- 2023年北京高考政治真題試題及答案
- 復旦中華傳統(tǒng)體育課程講義05木蘭拳基本技術
- 北師大版五年級上冊數(shù)學教學課件第5課時 人民幣兌換
- 工程回訪記錄單
- 住房公積金投訴申請書
評論
0/150
提交評論