![中南林業(yè)科技大學(xué)《智能計算與數(shù)據(jù)分析》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view15/M00/3D/04/wKhkGWecwF-Af4T0AAKaXoGPqk0057.jpg)
![中南林業(yè)科技大學(xué)《智能計算與數(shù)據(jù)分析》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view15/M00/3D/04/wKhkGWecwF-Af4T0AAKaXoGPqk00572.jpg)
![中南林業(yè)科技大學(xué)《智能計算與數(shù)據(jù)分析》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view15/M00/3D/04/wKhkGWecwF-Af4T0AAKaXoGPqk00573.jpg)
![中南林業(yè)科技大學(xué)《智能計算與數(shù)據(jù)分析》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view15/M00/3D/04/wKhkGWecwF-Af4T0AAKaXoGPqk00574.jpg)
![中南林業(yè)科技大學(xué)《智能計算與數(shù)據(jù)分析》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view15/M00/3D/04/wKhkGWecwF-Af4T0AAKaXoGPqk00575.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁中南林業(yè)科技大學(xué)《智能計算與數(shù)據(jù)分析》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)是一種創(chuàng)新的模型架構(gòu)。以下關(guān)于GAN的說法,不正確的是()A.GAN由生成器和判別器組成,通過兩者之間的對抗訓(xùn)練來生成逼真的數(shù)據(jù)B.GAN在圖像生成、文本生成和數(shù)據(jù)增強等領(lǐng)域取得了顯著的成果C.GAN的訓(xùn)練過程穩(wěn)定,容易收斂到最優(yōu)解D.GAN的應(yīng)用存在一些潛在的問題,如模式崩潰和訓(xùn)練不穩(wěn)定等2、在人工智能的發(fā)展過程中,算法的創(chuàng)新起著關(guān)鍵作用。假設(shè)我們要設(shè)計一種新的人工智能算法,以下關(guān)于算法設(shè)計的原則,哪一項是不正確的?()A.高效性B.可擴展性C.復(fù)雜性優(yōu)先D.創(chuàng)新性3、人工智能中的聚類算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對一組客戶數(shù)據(jù)進(jìn)行聚類分析。以下關(guān)于聚類算法的描述,哪一項是不準(zhǔn)確的?()A.K-Means算法是一種常見的聚類算法,需要事先指定簇的數(shù)量B.聚類算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場細(xì)分等應(yīng)用C.不同的聚類算法在不同的數(shù)據(jù)分布和場景下表現(xiàn)各異,需要根據(jù)實際情況選擇D.聚類結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響4、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是5、在人工智能的發(fā)展過程中,算力的提升起到了重要的推動作用。假設(shè)一個研究團(tuán)隊需要進(jìn)行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對人工智能的影響的描述,哪一項是不正確的?()A.強大的算力能夠加速模型的訓(xùn)練過程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進(jìn)D.算力的成本和可獲取性會影響人工智能技術(shù)的應(yīng)用和推廣6、在人工智能的優(yōu)化算法中,隨機梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個深度學(xué)習(xí)模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用7、在人工智能的決策樹算法中,當(dāng)進(jìn)行特征選擇來構(gòu)建決策樹時,以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹?()A.信息增益B.基尼系數(shù)C.隨機選擇特征D.選擇特征數(shù)量最多的特征8、在人工智能的文本摘要生成中,假設(shè)需要從長篇文章中提取關(guān)鍵信息并生成簡潔準(zhǔn)確的摘要。以下哪種方法能夠更好地捕捉文章的主旨和重點?()A.基于注意力機制的模型,關(guān)注重要的文本部分B.按照文章的開頭和結(jié)尾提取關(guān)鍵語句C.隨機選擇文章中的段落作為摘要D.不進(jìn)行任何分析,直接輸出原文的前幾段9、在人工智能的機器翻譯任務(wù)中,需要將一種語言翻譯成另一種語言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語和特定的文化背景知識。以下哪種方法能夠提高翻譯的準(zhǔn)確性和專業(yè)性?()A.使用通用的機器翻譯模型,不進(jìn)行任何定制B.結(jié)合領(lǐng)域詞典和知識圖譜進(jìn)行翻譯C.依靠人工翻譯,不使用機器翻譯D.隨機選擇翻譯結(jié)果,不考慮準(zhǔn)確性10、在人工智能的發(fā)展趨勢中,邊緣計算與人工智能的結(jié)合越來越受到關(guān)注。假設(shè)我們要在物聯(lián)網(wǎng)設(shè)備上實現(xiàn)實時的人工智能推理,以下關(guān)于邊緣計算與人工智能融合的描述,哪一項是不正確的?()A.可以減少數(shù)據(jù)傳輸延遲,提高響應(yīng)速度B.能夠降低對云計算中心的依賴C.邊緣設(shè)備的計算能力足以處理所有復(fù)雜的人工智能任務(wù)D.需要考慮能源消耗和設(shè)備成本等因素11、人工智能中的機器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)等。假設(shè)要對一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類,以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類B.無監(jiān)督學(xué)習(xí)中的K-Means聚類算法,自動將數(shù)據(jù)分為不同的簇C.強化學(xué)習(xí)中的Q-Learning算法,通過與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對未標(biāo)記數(shù)據(jù)進(jìn)行分類12、人工智能中的自動機器學(xué)習(xí)(AutoML)旨在自動化模型的選擇和調(diào)優(yōu)過程。假設(shè)一個企業(yè)沒有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來構(gòu)建模型。以下關(guān)于自動機器學(xué)習(xí)的描述,哪一項是錯誤的?()A.AutoML可以自動搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗豐富的數(shù)據(jù)科學(xué)家手動構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性13、在人工智能的機器學(xué)習(xí)算法中,決策樹是一種常見的算法。假設(shè)我們要根據(jù)一些用戶的特征來預(yù)測他們是否會購買某款產(chǎn)品,使用決策樹進(jìn)行建模。那么,關(guān)于決策樹的特點,以下哪一項是不正確的?()A.易于理解和解釋,生成的決策規(guī)則清晰明了B.對數(shù)據(jù)的噪聲和缺失值比較敏感C.能夠處理非線性關(guān)系的數(shù)據(jù)D.決策樹的構(gòu)建不需要進(jìn)行特征選擇14、人工智能在醫(yī)療影像診斷中的應(yīng)用不斷發(fā)展。假設(shè)一個醫(yī)院要引入人工智能輔助診斷系統(tǒng)來檢測癌癥。以下關(guān)于該應(yīng)用的描述,哪一項是錯誤的?()A.能夠提高診斷的準(zhǔn)確性和效率,減少漏診和誤診的情況B.可以與醫(yī)生的經(jīng)驗和判斷相結(jié)合,提供更全面的診斷依據(jù)C.人工智能診斷系統(tǒng)可以完全取代病理醫(yī)生的工作,獨立做出診斷結(jié)論D.需要經(jīng)過嚴(yán)格的臨床試驗和驗證,確保其安全性和有效性15、在人工智能的圖像識別任務(wù)中,需要對大量的圖像進(jìn)行分類,例如區(qū)分貓、狗、鳥等不同的動物類別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識別的準(zhǔn)確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)的概念。2、(本題5分)談?wù)勅斯ぶ悄茉谝魳飞芍械募夹g(shù)。3、(本題5分)談?wù)勅斯ぶ悄苤械乃阉魉惴āH?、操作題(本大題共5個小題,共25分)1、(本題5分)運用Python中的Scikit-learn庫,實現(xiàn)譜聚類算法對圖像數(shù)據(jù)進(jìn)行分割,比較不同參數(shù)設(shè)置下的分割效果。2、(本題5分)運用Python的Scikit-learn庫,實現(xiàn)彈性網(wǎng)絡(luò)(ElasticNet)回歸算法對數(shù)據(jù)進(jìn)行回歸分析。比較不同正則化參數(shù)組合下的模型性能。3、(本題5分)利用Python中的Keras庫,搭建一個基于注意力機制的神經(jīng)網(wǎng)絡(luò)模型,對圖像中的重要區(qū)域進(jìn)行關(guān)注和處理。通過調(diào)整注意力機制的參數(shù),提高模型對圖像的理解能力。4、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個變分自編碼器(VAE)對MNIST數(shù)據(jù)集進(jìn)行生成和重構(gòu)。分析潛在空間的特征,展示生成的數(shù)字圖像和重構(gòu)效果。5、(本題5分)在PyTorch中,構(gòu)建一個基于膠囊網(wǎng)絡(luò)(CapsNet)的圖像分類模型。比較CapsNet與傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)的性能差異。四、案例分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股東間股權(quán)轉(zhuǎn)讓協(xié)議
- 月嫂家政服務(wù)合同
- 廣告位租賃的合同
- 設(shè)備維護(hù)服務(wù)合同
- 停車車位租賃合同
- 模具鋼材采購合同
- 一兒一女夫妻離婚協(xié)議書
- 2025年日照貨運從業(yè)資格證模擬考試駕考
- 2025年德州貨運從業(yè)資格證模擬考試下載安裝
- 電梯管理方維修方及業(yè)主方三方合同(2篇)
- 14S501-1 球墨鑄鐵單層井蓋及踏步施工
- YB 4022-1991耐火泥漿荷重軟化溫度試驗方法(示差-升溫法)
- 胸腔積液護(hù)理查房-范本模板
- 水土保持方案中沉沙池的布設(shè)技術(shù)
- 安全生產(chǎn)技術(shù)規(guī)范 第25部分:城鎮(zhèn)天然氣經(jīng)營企業(yè)DB50-T 867.25-2021
- 現(xiàn)代企業(yè)管理 (全套完整課件)
- 走進(jìn)本土項目化設(shè)計-讀《PBL項目化學(xué)習(xí)設(shè)計》有感
- 《網(wǎng)店運營與管理》整本書電子教案全套教學(xué)教案
- 教師信息技術(shù)能力提升培訓(xùn)課件希沃的課件
- 高端公寓住宅項目營銷策劃方案(項目定位 發(fā)展建議)
- 執(zhí)業(yè)獸醫(yī)師聘用協(xié)議(合同)書
評論
0/150
提交評論