版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第7節(jié)二項(xiàng)分布、超幾何分布與正態(tài)分布知識點(diǎn)、方法基礎(chǔ)鞏固練綜合運(yùn)用練應(yīng)用創(chuàng)新練二項(xiàng)分布1,2,59超幾何分布3,4,811正態(tài)分布6,710概率分布模型的綜合應(yīng)用12,13141.設(shè)袋中有兩個紅球,一個黑球,除顏色不同,其他均相同,現(xiàn)有放回地抽取,每次抽取一個,記下顏色后放回袋中,連續(xù)抽三次,X表示三次中紅球被抽中的次數(shù),每個小球被抽取的概率相同,每次抽取相對獨(dú)立,則方差D(X)等于(C)A.2 B.1 C.23 D.解析:每次取球時,取到紅球的概率為23,取到黑球的概率為13,所以取出紅球的概率服從二項(xiàng)分布,即X~B(3,23),所以D(X)=3×23×(1-2.拋擲一枚質(zhì)地均勻的硬幣,規(guī)定正面向上得1分,反面向上得-1分,則得分X的均值與方差分別為(A)A.E(X)=0,D(X)=1B.E(X)=12,D(X)=C.E(X)=0,D(X)=1D.E(X)=12解析:由題意知,隨機(jī)變量X的分布列為X-11P11所以E(X)=(-1)×12+1×1D(X)=12×(-1-0)2+12×(1-0)3.口袋中有5個形狀和大小完全相同的小球,編號分別為0,1,2,3,4,從中任取3個球,以X表示取出球的最小號碼,則E(X)等于(B)A.0.45 B.0.5 C.0.55 D.0.6解析:易知隨機(jī)變量X的所有可能取值為0,1,2,由古典概型的概率計算公式得P(X=0)=C11CP(X=1)=C11C32C53=30.1=0.5.故選B.4.(多選題)(2021·山東煙臺質(zhì)檢)某人參加一次測試,在備選的10道題中,他能答對其中的5道.現(xiàn)從備選的10道題中隨機(jī)抽出3道題進(jìn)行測試,規(guī)定至少答對2題才算合格,則下列選項(xiàng)正確的是(CD)A.答對0題和答對3題的概率相同,都為1B.答對1題的概率為3C.答對2題的概率為5D.合格的概率為1解析:設(shè)此人答對題目的個數(shù)為ξ,則ξ的所有可能取值為0,1,2,3,P(ξ=0)=C50C53C103=112,P(ξ=1)=C51C52C103P(ξ=2)+P(ξ=3)=512+112=5.(多選題)袋子中有2個黑球,1個白球,現(xiàn)從袋子中有放回地隨機(jī)取球4次,取到白球記0分,黑球記1分,記4次取球的總分?jǐn)?shù)為X,則(ACD)A.X~B(4,23B.P(X=2)=8C.X的數(shù)學(xué)期望E(X)=8D.X的方差D(X)=8解析:從袋子中有放回地隨機(jī)取球4次,則每次取球互不影響,并且每次取到的黑球概率相等,又取到黑球記1分,取4次球的總分?jǐn)?shù),即為取到黑球的個數(shù),所以隨機(jī)變量X服從二項(xiàng)分布X~B(4,23X=2,記其概率為P(X=2)=C42×(23)2×(13)因?yàn)閄~B(4,23),所以X的數(shù)學(xué)期望為E(X)=4×23=因?yàn)閄~B(4,23),所以X的方差為D(X)=4×23×136.(2021·八省市新高考適應(yīng)性考試)對一個物理量做n次測量,并以測量結(jié)果的平均數(shù)作為該物理量的最后結(jié)果.已知最后結(jié)果的誤差εn~N(0,2n),為使誤差εn在(-0.5,0.5)的概率不小于0.9545,至少要測量次(若X~N(μ,σ2解析:根據(jù)正態(tài)曲線的對稱性知,要使誤差εn在(-0.5,0.5)的概率不小于0.9545,則(μ-2σ,μ+2σ)?(-0.5,0.5)且μ=0,σ=2n,所以0.5≥22n答案:327.(2021·重慶巴蜀中學(xué)模擬)中國某科技公司生產(chǎn)一批同型號的光纖通信儀器,每臺儀器的某一部件由三個電子元件按如圖所示的方式連接而成.已知元件1或元件2正常工作,且元件3正常工作,則該部件正常工作.由大數(shù)據(jù)統(tǒng)計顯示,三個電子元件的使用壽命(單位:h)均服從正態(tài)分布N(10000,102),且各個元件能否正常工作相互獨(dú)立.現(xiàn)從這批儀器中隨機(jī)抽取1000臺,檢測該部件的工作情況(各部件能否正常工作相互獨(dú)立),那么這1000臺儀器中該部件的使用壽命超過10000h的臺數(shù)的均值為.
解析:由正態(tài)分布可知,每個元件的使用壽命超過10000h的概率為12,則該部件的使用壽命超過10000h的概率為[1-(12)2]×12由題意知1000臺儀器中該部件的使用壽命超過10000h的臺數(shù)服從二項(xiàng)分布,所以臺數(shù)的均值為1000×38答案:3758.(2021·天津武清區(qū)高三模擬)已知一個袋子中裝有1個紅球,3個綠球,1個黃球.從袋中隨機(jī)取球,每次取3個,則取出的三個球顏色各不相同的概率為;記取出的球顏色種數(shù)為ξ,則E(ξ)=.解析:由題意,共有5個球,從中取出3個球,則有C5取出的三個球顏色各不相同,則紅球、綠球、黃球各取1個,有C33種不同的取法,所以取出的三個球顏色各不相同的概率為310取出的球顏色種數(shù)ξ的可能取值為1,2,3,P(ξ=3)=310,P(ξ=1)=1P(ξ=2)=C11C32所以ξ的分布列為ξ123P133所以E(ξ)=1×110+2×35+3×310答案:3109.(多選題)為弘揚(yáng)我國古代“六藝”文化,某研學(xué)旅行夏令營主辦單位計劃在暑假開設(shè)“禮、樂、射、御、書、數(shù)”六門體驗(yàn)課程,若甲、乙、丙三名同學(xué)每人只能體驗(yàn)其中一門課程,則(BCD)A.甲、乙、丙三人選擇課程方法有120種B.恰有三門課程沒有被三名同學(xué)選中的概率為5C.已知甲不選擇課程“御”的條件下,乙、丙也不選擇課程“御”的概率為25D.設(shè)三名同學(xué)選擇課程“禮”的人數(shù)為ξ,則E(ξ)=1解析:甲、乙、丙三名同學(xué)每人只能體驗(yàn)其中一門課程,則選擇方法有63=216種,故A錯誤;恰有三門課程沒有被三名同學(xué)選中,表示三名同學(xué)每個人選擇了不重復(fù)的一門課程,所以概率為A6363=120216=59,故B正確;已知甲不選擇課程“御”的概率為56,甲、乙、丙都不選擇課程“御”的概率為5363=125216,所以條件概率為10.(多選題)(2021·江蘇徐州高三模擬)已知某校有1200名同學(xué)參加某次模擬考試,其中數(shù)學(xué)考試成績X近似服從正態(tài)分布N(100,225),則下列說法正確的有(BD)(參考數(shù)據(jù):①P(μ-σ≤X≤μ+σ)≈0.6827;②P(μ-2σ≤X≤μ+2σ)≈0.9545;③P(μ-3σ≤X≤μ+3σ)≈0.9973)A.這次考試成績超過100分的約有500人B.這次考試分?jǐn)?shù)低于70分的約有27人C.P(115<X≤130)=0.0514D.從中任取3名同學(xué),至少有2人的分?jǐn)?shù)超過100分的概率為1解析:由題意可知,對于選項(xiàng)A,μ=100,σ=15,則P(X>100)=12,則成績超過100分的約有1200×1對于選項(xiàng)B,P(X≥70)=P(70≤X≤100)+P(X>100)=12P(100-2×15≤X≤100+2×15)+0.5≈12×1200=27.3,即約為27人,所以選項(xiàng)B正確;對于選項(xiàng)C,P(X≤115)=P(X<100)+12P(100-15≤X≤100+15)≈0.5+10.6827=0.84135,P(X≤130)=P(X<100)+12P(100-2×15≤X≤100+215)≈0.5+12×P(X≤115)=0.97725-0.84135=0.1359,所以選項(xiàng)C錯誤;對于選項(xiàng)D,因?yàn)镻(X>100)=12,且至少有2人的分?jǐn)?shù)超過100分的情況如下:①恰好有2人時概率為C32×(12)2×12=38;②3人均超過100分時的概率為(12)3=111.(2021·天津南開區(qū)高三模擬)一個袋中共有10個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是25;從袋中任意摸出2個球,至少得到1個白球的概率是79,則白球的個數(shù)為;從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望E(ξ)=解析:設(shè)白球的個數(shù)為y,又從袋中任意摸出2個球,至少得到1個白球的概率是79則Cy2+由題設(shè)知ξ的所有可能取值是0,1,2,3,P(ξ=0)=C53C103=1P(ξ=2)=C52C51C10則隨機(jī)變量ξ的分布列為ξ0123P1551所以E(ξ)=512+512×2+312答案:5312.(2021·河北饒陽中學(xué)高三模擬)由商務(wù)部和北京市人民政府共同主辦的2020年中國國際服務(wù)貿(mào)易交易會(簡稱服貿(mào)會)于9月4日開幕,主題為“全球服務(wù),互惠共享”.某高校為了調(diào)查學(xué)生對服貿(mào)會的了解情況,決定隨機(jī)抽取100名學(xué)生進(jìn)行采訪.根據(jù)統(tǒng)計結(jié)果,采訪的學(xué)生中男女比例為3∶2,已知抽取的男生中有10名不了解服貿(mào)會,抽取的女生中有25名了解服貿(mào)會,請解答下面所提出的相關(guān)問題.(1)完成2×2列聯(lián)表,并回答“是否有99%的把握認(rèn)為學(xué)生對服貿(mào)會的了解情況與性別有關(guān)”.性別了解情況合計了解不了解男生女生合計100(2)若從被采訪的學(xué)生中利用分層隨機(jī)抽樣的方法抽取5人,再從這5人中隨機(jī)抽取3人在校內(nèi)開展一次“介紹服貿(mào)會”的專題活動,記抽取男生的人數(shù)為ξ,求出ξ的分布列及數(shù)學(xué)期望.附:χ2=n(α0.150.100.050.0250.0100.0050.001xα2.0722.7063.8415.0246.6357.87910.828解:(1)2×2列聯(lián)表如表:性別了解情況合計了解不了解男生501060女生251540合計7525100χ2=100×(所以沒有99%的把握認(rèn)為學(xué)生對服貿(mào)會的了解情況與性別有關(guān).(2)根據(jù)題意,抽取的5人中男生有3人,女生有2人.從這5人中隨機(jī)抽取3人,則男生人數(shù)ξ的所有可能取值為1,2,3,則P(ξ=1)=C31C22C5P(ξ=3)=C33C所以ξ的分布列為ξ123P361所以E(ξ)=1×310+2×610+3×11013.(2021·江西南昌模擬)有某品牌A型和B型兩種節(jié)能燈,假定A型節(jié)能燈使用壽命都超過5000h.經(jīng)銷商對B型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計,得到如圖所示的頻率分布直方圖.某商家因原店面需重新裝修,需租賃一家新店面進(jìn)行周轉(zhuǎn),合約期一年.新店面需安裝該品牌節(jié)能燈5只(同種型號)即可正常營業(yè).經(jīng)了解,A型20W和B型55W的兩種節(jié)能燈照明效果相當(dāng),都適合安裝.已知A型和B型節(jié)能燈每只的價格分別為120元、25元,當(dāng)?shù)厣虡I(yè)電價為0.75元/kW·h.假定該店面正常營業(yè)一年的照明時間為3600h,若正常營業(yè)期間燈壞了立即購買同種型號的燈更換(用頻率估計概率).(1)若該商家新店面全部安裝了B型節(jié)能燈,求一年內(nèi)恰好更換了2只燈的概率;(2)若只考慮燈的成本和消耗電費(fèi),你認(rèn)為該商家應(yīng)選擇哪種型號的節(jié)能燈,請說明理由.解:(1)由頻率分布直方圖可知B型節(jié)能燈使用壽命超過3600h的頻率為0.0010×200=0.2,用頻率估計概率,得B型節(jié)能燈使用壽命超過3600h的概率為15所以一年內(nèi)一只B型節(jié)能燈在使用期間需更換的概率為45所以一年內(nèi)恰好更換了2只燈的概率為C52×(45)2×(15)(2)共需要安裝5只同型號的節(jié)能燈,若選擇A型節(jié)能燈,一年共需花費(fèi)5×120+3600×5×20×0.75×10-3=870(元).若選擇B型節(jié)能燈,由于B型節(jié)能燈一年內(nèi)需更換的只數(shù)服從二項(xiàng)分布B(5,45故一年需更換燈的只數(shù)的數(shù)學(xué)期望為5×45故一年共需花費(fèi)(5+4)×25+3600×5×55×0.75×10-3=967.5(元).因?yàn)?67.5>870,所以該商家應(yīng)選擇A型節(jié)能燈.14.(2021·山西高三三模)2021年是中國共產(chǎn)黨百年華誕.中國站在“兩個一百年”的歷史交匯點(diǎn),全面建設(shè)社會主義現(xiàn)代化國家新征程即將開啟.2021年3月23日,中宣部介紹中國共產(chǎn)黨成立100周年慶?;顒影隧?xiàng)主要內(nèi)容,其中第一項(xiàng)是結(jié)合鞏固深化“不忘初心、牢記使命”主題教育成果,在全體黨員中開展黨史學(xué)習(xí)教育.這次學(xué)習(xí)教育貫穿2021年全年,總的要求是學(xué)史明理、學(xué)史增信、學(xué)史崇德、學(xué)史力行,教育引導(dǎo)黨員干部學(xué)黨史、悟思想、辦實(shí)事、開新局.為了配合這次學(xué)黨史活動,某地組織全體黨員干部參加黨史知識競賽,現(xiàn)從參加人員中隨機(jī)抽取100人,并對他們的分?jǐn)?shù)進(jìn)行統(tǒng)計,得到如圖所示的頻率分布直方圖.(1)現(xiàn)從這100人中隨機(jī)抽取2人,記其中得分不低于80分的人數(shù)為ξ,試求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望;(2)由頻率分布直方圖,可以認(rèn)為該地參加黨史知識競賽人員的分?jǐn)?shù)X服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2,經(jīng)計算s2=192.44.現(xiàn)從所有參加黨史知識競賽的人員中隨機(jī)抽取500人,且參加黨史知識競賽的人員的分?jǐn)?shù)相互獨(dú)立,試問這500名參賽者的分?jǐn)?shù)高于82.3的人數(shù)最有可能是多少?參考數(shù)據(jù):192.2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.解:(1)100人中得分不低于80分的人數(shù)為(0.014+0.006)×10×100=20,隨機(jī)變量ξ的可能取值為0,1,2.P(ξ=0)=C802C1002=316P(ξ=2)=C202C則ξ的分布列為ξ012P3163219E(ξ)=0×316495+1×3299+2×19495=198(2)μ=35×0.04+45×0.06+55×0.11+65×0.36+75×
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度洗浴中心會員服務(wù)體系搭建與運(yùn)營合同4篇
- 2025年度個人住房租賃貸款合同范本3篇
- 個人貸款合同正規(guī)模板(2024年修訂)版B版
- 專屬歌星演出聘請合同范本版B版
- 2024水庫工程建設(shè)項(xiàng)目施工人員培訓(xùn)與管理合同3篇
- 2025年度洛陽租賃房屋租賃合同違約責(zé)任協(xié)議4篇
- 2025年度環(huán)保設(shè)備零星維修服務(wù)合同范本3篇
- 智能工廠的融資規(guī)劃與實(shí)施方案
- 二零二五版生物制藥股份公司成立股東臨床試驗(yàn)協(xié)議3篇
- 2025版停車場車位共享平臺承包運(yùn)營管理合同樣本3篇
- 氦離子化色譜法測試電氣設(shè)備油中溶解氣體的技術(shù)規(guī)范
- 中國聯(lián)合網(wǎng)絡(luò)通信有限公司招聘筆試題庫2024
- 【社會工作介入精神障礙社區(qū)康復(fù)問題探究的文獻(xiàn)綜述5800字】
- 節(jié)前停工停產(chǎn)與節(jié)后復(fù)工復(fù)產(chǎn)安全注意事項(xiàng)課件
- 設(shè)備管理績效考核細(xì)則
- 中國人民銀行清算總中心直屬企業(yè)2023年招聘筆試上岸歷年典型考題與考點(diǎn)剖析附帶答案詳解
- (正式版)SJT 11449-2024 集中空調(diào)電子計費(fèi)信息系統(tǒng)工程技術(shù)規(guī)范
- 人教版四年級上冊加減乘除四則混合運(yùn)算300題及答案
- 合成生物學(xué)技術(shù)在生物制藥中的應(yīng)用
- 消化系統(tǒng)疾病的負(fù)性情緒與心理護(hù)理
- 高考語文文學(xué)類閱讀分類訓(xùn)練:戲劇類(含答案)
評論
0/150
提交評論