福建省柘榮一中、寧德高中重點(diǎn)中學(xué)2024屆高三下學(xué)期期末數(shù)學(xué)試題測(cè)試卷_第1頁(yè)
福建省柘榮一中、寧德高中重點(diǎn)中學(xué)2024屆高三下學(xué)期期末數(shù)學(xué)試題測(cè)試卷_第2頁(yè)
福建省柘榮一中、寧德高中重點(diǎn)中學(xué)2024屆高三下學(xué)期期末數(shù)學(xué)試題測(cè)試卷_第3頁(yè)
福建省柘榮一中、寧德高中重點(diǎn)中學(xué)2024屆高三下學(xué)期期末數(shù)學(xué)試題測(cè)試卷_第4頁(yè)
福建省柘榮一中、寧德高中重點(diǎn)中學(xué)2024屆高三下學(xué)期期末數(shù)學(xué)試題測(cè)試卷_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省柘榮一中、寧德高中重點(diǎn)中學(xué)2023屆高三下學(xué)期期末數(shù)學(xué)試題測(cè)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.2.《九章算術(shù)》有如下問題:“今有金箠,長(zhǎng)五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長(zhǎng)五尺在粗的一端截下一尺,重斤;在細(xì)的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細(xì)各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤3.如圖,在直三棱柱中,,,點(diǎn)分別是線段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.4.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知過點(diǎn)且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.36.年部分省市將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B.C. D.7.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.118.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.9.已知集合(),若集合,且對(duì)任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.10.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.11.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件12.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且,,,則_______.14.已知為橢圓內(nèi)一定點(diǎn),經(jīng)過引一條弦,使此弦被點(diǎn)平分,則此弦所在的直線方程為________________.15.《九章算術(shù)》卷5《商功》記載一個(gè)問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),則由此可推得圓周率的取值為________.16.在四棱錐中,是邊長(zhǎng)為的正三角形,為矩形,,.若四棱錐的頂點(diǎn)均在球的球面上,則球的表面積為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點(diǎn),求.18.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,求的面積的值(或最大值).已知的內(nèi)角,,所對(duì)的邊分別為,,,三邊,,與面積滿足關(guān)系式:,且,求的面積的值(或最大值).19.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,右準(zhǔn)線為,是上的兩個(gè)動(dòng)點(diǎn),.(Ⅰ)若,求的值;(Ⅱ)證明:當(dāng)取最小值時(shí),與共線.21.(12分)《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績(jī)由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績(jī)從高到低劃分為、、、、、、、共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為、、、、、、、.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將至等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、、八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布.(1)求物理原始成績(jī)?cè)趨^(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量,則,,)22.(10分)已知奇函數(shù)的定義域?yàn)椋耶?dāng)時(shí),.(1)求函數(shù)的解析式;(2)記函數(shù),若函數(shù)有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則,所以.故選:A【點(diǎn)睛】本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.2.B【解析】

依題意,金箠由粗到細(xì)各尺重量構(gòu)成一個(gè)等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細(xì)各尺重量依次所成得等差數(shù)列為,設(shè)首項(xiàng),則,公差,.故選B【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3.D【解析】

過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)椋?,所以,即過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點(diǎn)睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.4.D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對(duì)應(yīng)點(diǎn)即可判斷.【詳解】,故其對(duì)應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.5.C【解析】

設(shè)切點(diǎn)為,則,由于直線經(jīng)過點(diǎn),可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)處的切線斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線與曲線切于點(diǎn),則,又∵,∴,∴,解得,,∴過點(diǎn)與曲線相切的直線方程為或,故選C.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.6.B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.7.B【解析】

根據(jù)題意計(jì)算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.8.C【解析】

轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.9.C【解析】

根據(jù)題目中的基底定義求解.【詳解】因?yàn)椋?,,,,,所以能作為集合的基底,故選:C【點(diǎn)睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.10.D【解析】

根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項(xiàng).【詳解】因?yàn)槭嵌x在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點(diǎn)和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.11.B【解析】

解出兩個(gè)不等式的解集,根據(jù)充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因?yàn)榧?,所以“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對(duì)值不等式和一元二次不等式的解法.12.D【解析】

可過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.9【解析】

已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.14.【解析】

設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),利用點(diǎn)差法可求得直線的斜率,進(jìn)而可求得直線的點(diǎn)斜式方程,化為一般式即可.【詳解】設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),由于點(diǎn)為弦的中點(diǎn),則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點(diǎn)睛】本題考查利用弦的中點(diǎn)求弦所在直線的方程,一般利用點(diǎn)差法,也可以利用韋達(dá)定理設(shè)而不求法來解答,考查計(jì)算能力,屬于中等題.15.3【解析】

根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.16.【解析】

做中點(diǎn),的中點(diǎn),連接,由已知條件可求出,運(yùn)用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長(zhǎng)方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過球心滿足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點(diǎn),的中點(diǎn),連接,由題意知,則設(shè)的外接圓圓心為,則在直線上且設(shè)長(zhǎng)方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點(diǎn),以所在直線為軸,以過點(diǎn)垂直于軸的直線為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因?yàn)椋越獾?則所以球的表面積為.故答案為:.【點(diǎn)睛】本題考查了幾何體外接球的問題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過將幾何體補(bǔ)充到長(zhǎng)方體中,將幾何體的外接球等同于長(zhǎng)方體的外接球,求出體對(duì)角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設(shè)半徑列方程求解;三是通過空間、平面坐標(biāo)系進(jìn)行求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計(jì)算b,可得結(jié)果.(2)計(jì)算,然后根據(jù)余弦定理,可得,利用平方關(guān)系,可得結(jié)果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設(shè)D靠近點(diǎn)B,則BD=DE=EC=1.,所以所以.【點(diǎn)睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.18.見解析【解析】

若選擇①,結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,將代入,得.又,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴,故的面積的最大值為,此時(shí).若選擇②,,結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,則,此時(shí)為等腰直角三角形,.若選擇③,,則結(jié)合三角形的面積公式,得,化簡(jiǎn)得到,則,又,從而得到,則.19.(1);(2)【解析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項(xiàng)和公式,即可求解.【詳解】(1)因?yàn)椋?,又所以?shù)列為等比數(shù)列,且首項(xiàng)為,公比為.故(2)由(1)知,所以所以【點(diǎn)睛】本題考查等比數(shù)列的定義及通項(xiàng)公式、等差數(shù)列和等比數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.20.(Ⅰ)(Ⅱ)證明見解析.【解析】由與,得,,的方程為.設(shè),則,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),當(dāng)且僅當(dāng)或時(shí),取最小值,此時(shí),,故與共線.21.(Ⅰ)1636人;(Ⅱ)見解析.【解析】

(Ⅰ)根據(jù)正態(tài)曲線的對(duì)稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績(jī)?cè)趨^(qū)間內(nèi)的概率,進(jìn)而可求出相應(yīng)的人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論