版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁云南中醫(yī)藥大學(xué)
《數(shù)據(jù)分析與挖掘?qū)嶒?yàn)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)挖掘時(shí),分類算法中的決策樹算法具有易于理解和解釋的優(yōu)點(diǎn)。以下哪個(gè)因素不會(huì)影響決策樹的構(gòu)建?()A.特征選擇B.樣本數(shù)量C.數(shù)據(jù)的缺失值D.計(jì)算資源的大小2、在構(gòu)建數(shù)據(jù)分析模型時(shí),過擬合是一個(gè)常見的問題。假設(shè)一個(gè)模型在訓(xùn)練集上表現(xiàn)非常好,但在測試集上表現(xiàn)很差,這可能表明發(fā)生了什么?()A.模型過于簡單,無法捕捉數(shù)據(jù)中的復(fù)雜模式B.模型過于復(fù)雜,對(duì)訓(xùn)練數(shù)據(jù)過度擬合C.數(shù)據(jù)中存在噪聲,影響了模型的性能D.測試集的數(shù)據(jù)質(zhì)量有問題3、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對(duì)照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過控制混雜因素來推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來解決因果推斷中的內(nèi)生性問題4、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶進(jìn)行分類,以實(shí)現(xiàn)精準(zhǔn)營銷?()A.決策樹算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法5、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在部分缺失值、錯(cuò)誤值和重復(fù)數(shù)據(jù)。如果不進(jìn)行有效的數(shù)據(jù)清洗,直接進(jìn)行數(shù)據(jù)分析,可能會(huì)導(dǎo)致什么樣的結(jié)果?()A.分析結(jié)果不準(zhǔn)確,得出錯(cuò)誤的結(jié)論B.分析速度加快,提高工作效率C.能夠發(fā)現(xiàn)更多隱藏的信息和模式D.對(duì)分析結(jié)果沒有任何影響6、對(duì)于一個(gè)包含時(shí)間戳的數(shù)據(jù),若要按照時(shí)間順序進(jìn)行分組并計(jì)算每組的統(tǒng)計(jì)量,以下哪種方法在Python中較為便捷?()A.使用pd.Grouper函數(shù)B.自定義函數(shù)進(jìn)行分組C.先對(duì)時(shí)間戳進(jìn)行排序,再進(jìn)行分組D.以上方法都可行7、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是8、在處理缺失值時(shí),如果缺失值的比例較高且數(shù)據(jù)呈現(xiàn)一定的規(guī)律性,以下哪種方法可能較為有效?()A.基于模型的插補(bǔ)B.多重插補(bǔ)C.隨機(jī)插補(bǔ)D.以上都不是9、在進(jìn)行數(shù)據(jù)融合時(shí),將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會(huì)引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對(duì)于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合10、在構(gòu)建數(shù)據(jù)分析模型時(shí),模型評(píng)估指標(biāo)是衡量模型性能的重要依據(jù)。假設(shè)你建立了一個(gè)客戶流失預(yù)測模型,以下關(guān)于評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最能反映模型實(shí)際效果的?()A.準(zhǔn)確率,即正確預(yù)測的比例B.召回率,即正確預(yù)測流失客戶的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量預(yù)測值與實(shí)際值的差異11、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉庫的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫可以將來自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉庫可以提供高效的數(shù)據(jù)查詢和分析功能C.數(shù)據(jù)倉庫中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時(shí)間和資源12、數(shù)據(jù)分析中常用的軟件有很多,其中Excel是一種廣泛使用的工具。以下關(guān)于Excel在數(shù)據(jù)分析中的作用,錯(cuò)誤的是?()A.Excel可以進(jìn)行數(shù)據(jù)的輸入、編輯和存儲(chǔ)B.Excel可以進(jìn)行簡單的數(shù)據(jù)分析,如計(jì)算均值、標(biāo)準(zhǔn)差等C.Excel可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化D.Excel可以處理大規(guī)模的數(shù)據(jù)集,適用于復(fù)雜的數(shù)據(jù)分析任務(wù)13、在數(shù)據(jù)預(yù)處理中,處理異常值是重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含員工工資的數(shù)據(jù)集,以下關(guān)于異常值處理的描述,正確的是:()A.直接刪除異常值,不進(jìn)行任何進(jìn)一步的分析B.異常值一定是錯(cuò)誤的數(shù)據(jù),必須修正C.分析異常值產(chǎn)生的原因,根據(jù)具體情況決定處理方式D.異常值對(duì)數(shù)據(jù)分析沒有任何影響,無需關(guān)注14、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是15、數(shù)據(jù)分析中的文本分析是一個(gè)重要領(lǐng)域。假設(shè)你要對(duì)大量的客戶評(píng)論進(jìn)行情感分析,判斷是正面、負(fù)面還是中性。以下關(guān)于文本分析方法的選擇,哪一項(xiàng)是最重要的?()A.使用詞袋模型,基于詞頻統(tǒng)計(jì)進(jìn)行分析B.運(yùn)用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò),自動(dòng)提取特征C.借助詞典和規(guī)則,根據(jù)預(yù)定義的情感詞和句式判斷D.隨機(jī)抽取部分評(píng)論進(jìn)行人工分析,以此類推整體16、在進(jìn)行數(shù)據(jù)分析時(shí),異常值的檢測和處理是重要的環(huán)節(jié)。假設(shè)我們在分析一組生產(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù)。以下關(guān)于異常值的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.異常值可能是由于數(shù)據(jù)錄入錯(cuò)誤或特殊情況導(dǎo)致的B.可以通過箱線圖等方法直觀地檢測異常值C.對(duì)于異常值,應(yīng)該立即刪除,以免影響分析結(jié)果D.對(duì)異常值的處理需要根據(jù)具體情況進(jìn)行判斷,有時(shí)需要進(jìn)一步調(diào)查原因17、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行降維并保留數(shù)據(jù)的主要特征,以下哪種方法基于矩陣分解?()A.主成分分析B.因子分析C.獨(dú)立成分分析D.以上都是18、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個(gè)PB級(jí)別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項(xiàng)是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲(chǔ)數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實(shí)現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無能為力D.實(shí)時(shí)處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架19、假設(shè)要分析不同產(chǎn)品類別的市場份額及其變化趨勢,以下關(guān)于市場份額分析的描述,正確的是:()A.只計(jì)算當(dāng)前的市場份額,不考慮歷史數(shù)據(jù)B.市場份額的變化趨勢可以通過簡單的差值計(jì)算得出C.考慮競爭對(duì)手的策略和市場動(dòng)態(tài)對(duì)市場份額的影響,進(jìn)行綜合分析D.市場份額分析只適用于成熟的市場,對(duì)于新興市場沒有意義20、假設(shè)要分析股票市場數(shù)據(jù)的波動(dòng)性,以下關(guān)于波動(dòng)性分析方法的描述,正確的是:()A.計(jì)算簡單移動(dòng)平均就能準(zhǔn)確衡量股票價(jià)格的波動(dòng)性B.標(biāo)準(zhǔn)差越大,說明股票價(jià)格的波動(dòng)性越小C.歷史波動(dòng)率對(duì)預(yù)測未來股票價(jià)格的波動(dòng)沒有參考價(jià)值D.采用ARCH和GARCH模型可以更好地捕捉股票價(jià)格波動(dòng)的聚類性和異方差性二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡述數(shù)據(jù)分析師如何與利益相關(guān)者進(jìn)行有效的溝通,以確保數(shù)據(jù)分析結(jié)果得到正確理解和應(yīng)用,包括溝通技巧和注意事項(xiàng)。2、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何進(jìn)行數(shù)據(jù)的倫理和法律考量?闡述數(shù)據(jù)收集、使用和共享過程中的合規(guī)性和道德問題。3、(本題5分)在處理金融數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋風(fēng)險(xiǎn)評(píng)估、投資組合優(yōu)化等概念,并舉例說明應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線教育平臺(tái)的語言學(xué)習(xí)類目保存了學(xué)生的數(shù)據(jù),包含語言種類、學(xué)習(xí)進(jìn)度、作業(yè)完成情況、考試成績等。分析不同語言種類的學(xué)習(xí)進(jìn)度與考試成績的關(guān)系。2、(本題5分)某物流企業(yè)掌握了不同運(yùn)輸方式的成本數(shù)據(jù)、運(yùn)輸時(shí)效、貨物損壞率等。探討怎樣利用這些數(shù)據(jù)選擇最優(yōu)的運(yùn)輸方式和優(yōu)化物流方案。3、(本題5分)某鮮花電商平臺(tái)收集了鮮花銷售數(shù)據(jù)、節(jié)日需求、配送區(qū)域等。優(yōu)化鮮花采購和配送策略,應(yīng)對(duì)節(jié)日高峰需求。4、(本題5分)某超市的進(jìn)口食品類目記錄了銷售數(shù)據(jù),包括食品種類、產(chǎn)地、價(jià)格、促銷活動(dòng)、消費(fèi)者收入水平等。分析不同產(chǎn)地和消費(fèi)者收入水平對(duì)進(jìn)口食品銷售和促銷活動(dòng)效果的影響。5、(本題5分)某金融公司擁有客戶的信用記錄、貸款金額、還款情況等數(shù)據(jù)。分析客戶
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇護(hù)理職業(yè)學(xué)院《數(shù)據(jù)庫系統(tǒng)原理(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 黃山職業(yè)技術(shù)學(xué)院《藥事管理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南勞動(dòng)人事職業(yè)學(xué)院《建筑構(gòu)造Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北生物科技職業(yè)學(xué)院《金屬熔煉與鑄造》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】《大氣壓強(qiáng)》(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教版(2024)初中物理八年級(jí)下冊
- 高考物理模擬測試題(附帶答案)
- 重慶師范大學(xué)《軟件測試課設(shè)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶電信職業(yè)學(xué)院《擴(kuò)聲技術(shù)1》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江中醫(yī)藥大學(xué)《嵌入式系統(tǒng)開發(fā)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江機(jī)電職業(yè)技術(shù)學(xué)院《空間信息系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 語文-山東省2025年1月濟(jì)南市高三期末學(xué)習(xí)質(zhì)量檢測濟(jì)南期末試題和答案
- 2025年七年級(jí)下冊道德與法治主要知識(shí)點(diǎn)
- 亞馬遜項(xiàng)目合伙合同
- 蘭溪市排水防澇提升雨污管網(wǎng)修復(fù)改造初步設(shè)計(jì)文本
- 即興表演(上海電影藝術(shù)職業(yè)學(xué)院)知到智慧樹答案
- 2024解析:第一章機(jī)械運(yùn)動(dòng)-基礎(chǔ)練(解析版)
- 2024年山東省淄博市中考數(shù)學(xué)試卷(附答案)
- 車輛火災(zāi)應(yīng)急處置
- 快遞進(jìn)港客服培訓(xùn)課件
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 2022年北京控股集團(tuán)有限公司招聘筆試題庫及答案解析
評(píng)論
0/150
提交評(píng)論