2025年人教B版高一數(shù)學(xué)下冊月考試卷_第1頁
2025年人教B版高一數(shù)學(xué)下冊月考試卷_第2頁
2025年人教B版高一數(shù)學(xué)下冊月考試卷_第3頁
2025年人教B版高一數(shù)學(xué)下冊月考試卷_第4頁
2025年人教B版高一數(shù)學(xué)下冊月考試卷_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年人教B版高一數(shù)學(xué)下冊月考試卷470考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共6題,共12分)1、設(shè)a>0,將表示成分?jǐn)?shù)指數(shù)冪;其結(jié)果是()

A.

B.

C.

D.

2、【題文】已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},則M∩N=()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}3、【題文】已知函數(shù)在區(qū)間上是增函數(shù),則的范圍是A.B.C.D.4、【題文】設(shè)全集集合則=()A.B.C.D.5、執(zhí)行如圖的程序框圖,若輸人a=319,b=87;則輸出的a是()

A.19B.29C.57D.766、設(shè)x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥∥則|+|=()A.B.C.2D.10評卷人得分二、填空題(共8題,共16分)7、把正整數(shù)1;2,3,4,5,,按如下規(guī)律排列:

。123456789101112131415按次規(guī)律,可知第n行有____個正整數(shù).8、已知函數(shù)y=loga(x-b)的圖象如圖所示,則ab=____.9、已知則f(x)=____.10、有一道解三角形的題因紙張破損,有一條件不清,且具體如下:在△ABC中,已知B=,求角A.經(jīng)推斷破損處的條件為三角形一邊的長度,且答案提示A=請將條件補(bǔ)完整.11、對于任給的實數(shù)直線都通過一定點,則該定點坐標(biāo)為.12、【題文】求值:=____.13、設(shè)m;n是兩條不同的直線;α,β,γ是三個不同的平面,給出下列四個命題:

①若m⊥α;n∥α,則m⊥n;

②若α⊥γ;β⊥γ,α∩β=m,則m⊥γ;

③若m∥α;n?α,則m∥n;

④若α⊥β;α∩β=n,m⊥n,則m⊥β

其中正確命題的序號是______.14、在某程序框圖如圖所示,當(dāng)輸入50

時,則該程序運(yùn)算后輸出的結(jié)果是______.

評卷人得分三、證明題(共9題,共18分)15、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.16、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.17、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.18、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.19、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.20、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.21、如圖,已知:D、E分別為△ABC的AB、AC邊上的點,DE∥BC,BE與CD交于點O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.22、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點;

(2)若CF=3,DE?EF=,求EF的長.23、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.評卷人得分四、作圖題(共4題,共40分)24、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費(fèi)用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.25、作出函數(shù)y=的圖象.26、畫出計算1++++的程序框圖.27、繪制以下算法對應(yīng)的程序框圖:

第一步;輸入變量x;

第二步,根據(jù)函數(shù)f(x)=

對變量y賦值;使y=f(x);

第三步,輸出變量y的值.評卷人得分五、綜合題(共1題,共8分)28、已知開口向上的拋物線y=ax2+bx+c與x軸交于A(-3;0);B(1,0)兩點,與y軸交于C點,∠ACB不小于90°.

(1)求點C的坐標(biāo)(用含a的代數(shù)式表示);

(2)求系數(shù)a的取值范圍;

(3)設(shè)拋物線的頂點為D;求△BCD中CD邊上的高h(yuǎn)的最大值.

(4)設(shè)E,當(dāng)∠ACB=90°,在線段AC上是否存在點F,使得直線EF將△ABC的面積平分?若存在,求出點F的坐標(biāo);若不存在,說明理由.參考答案一、選擇題(共6題,共12分)1、C【分析】

由題意=

故選C.

【解析】【答案】由根式與分?jǐn)?shù)指數(shù)冪的互化規(guī)則則所給的根式化簡即可將其表示成分?jǐn)?shù)指數(shù)冪;求得其結(jié)果選出正確選項.

2、A【分析】【解析】因為集合M={x|(x-1)2<4,x∈R}=N={-1,0,1,2,3},所以M∩N={0,1,2},故選A.

【考點定位】本小題主要結(jié)合一元二次不等式,考查集合的運(yùn)算(交集),屬容易題,掌握一元二次不等式的解法與集合的基本運(yùn)算是解答好本類題目的關(guān)鍵.【解析】【答案】A3、A【分析】【解析】

試題分析:因為函數(shù)在區(qū)間上是增函數(shù),而其函數(shù)的對稱軸為x=那么可知,區(qū)間故有選A.

考點:本試題主要考查了一元二次函數(shù)的單調(diào)性的運(yùn)用。

點評:解決該試題的關(guān)鍵是理解題目中給出的區(qū)間是二次函數(shù)單調(diào)增區(qū)間的子區(qū)間的關(guān)系即可,那么求解對稱軸,得到不等式?!窘馕觥俊敬鸢浮緼4、B【分析】【解析】因為設(shè)全集集合則=選B【解析】【答案】B5、B【分析】【解答】解:第一次執(zhí)行循環(huán)體后:c=58,a=87,b=58;不滿足退出循環(huán)的條件;

第二次執(zhí)行循環(huán)體后:c=29,a=58,b=29;不滿足退出循環(huán)的條件;

第三次執(zhí)行循環(huán)體后:c=0,a=29,b=0;滿足退出循環(huán)的條件;

故輸出的a值為29;

故選:B

【分析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量a的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.6、B【分析】【解答】解:∵且∴x?2+1?(﹣4)=0,解得x=2.

又∵且

∴1?(﹣4)=y?2;解之得y=﹣2;

由此可得

∴=(3;﹣1);

可得|+|==.

故選:B

【分析】由向量平行與垂直的充要條件建立關(guān)于x、y的等式,解出x、y的值求出向量的坐標(biāo),從而得到向量的坐標(biāo),再由向量模的公式加以計算,可得答案.二、填空題(共8題,共16分)7、略

【分析】【分析】觀察已知排列的數(shù),依次正整數(shù)的個數(shù)是,1,2,4,8,,分析得出是規(guī)律,根據(jù)規(guī)律求出第n行的正整數(shù)個數(shù).【解析】【解答】解:由已知得出每行的正整數(shù)的個數(shù)是1;2,4,8,,其規(guī)律:

1=21-1;

2=22-1;

4=23-1;

8=24-1;

由此得出第n行的正整數(shù)個數(shù)為:2n-1.

故答案為:2n-1.8、略

【分析】

由圖象可知:即解得

∴=(3-1)-3=33=27.

故答案為27.

【解析】【答案】由圖象的特殊點即可得出代入解出即可.

9、略

【分析】

∵①

∴②

①×2-②得:

3f(x)=4x-+1

∴f(x)=

故答案為:

【解析】【答案】根據(jù)已知中我們用替換x后可得構(gòu)造方程組;進(jìn)而利用加減消元法,可得答案.

10、略

【分析】試題分析:由正弦定理得:或者先由三角形的內(nèi)角和定理得到C=75再用正弦定理得故條件可能為:考點:解三角形.【解析】【答案】11、略

【分析】試題分析:將原式整理為不過為何值,必過直線的交點,解得:所以定點坐標(biāo)為考點:過定點直線【解析】【答案】12、略

【分析】【解析】解:因為【解析】【答案】113、略

【分析】解:對于①;因為n∥α,所以經(jīng)過n作平面β,使β∩α=l,可得n∥l;

又因為m⊥α;l?α,所以m⊥l,結(jié)合n∥l得m⊥n.由此可得①是真命題;

對于②;因為α,β垂直于同一個平面γ,故α,β的交線一定垂直于γ,是真命題;

對于③;m∥α,n?α,則m∥n或異面,是假命題;

對于④;若α⊥β,α∩β=n,m⊥n,m?α,則m⊥β,是假命題.

故答案為:①②.

根據(jù)線面平行性質(zhì)定理;結(jié)合線面垂直的定義,可得①是真命題;

根據(jù)如果兩個平面都垂直于同一個平面;則這兩個平面的交線一定垂直于第三個平面進(jìn)行判斷②是真命題;

③④列舉反例即可.

本題給出關(guān)于空間線面位置關(guān)系的命題,要我們找出其中的真命題,著重考查了線面平行、面面平行的性質(zhì)和線面垂直、面面垂直的判定與性質(zhì)等知識,屬于中檔題.【解析】①②14、略

【分析】解:由程序框圖知:第一次循環(huán)S=1i=2

第二次循環(huán)S=2隆脕1+2=4i=3

第三次循環(huán)S=2隆脕4+3=11i=4

第四次循環(huán)S=2隆脕11+4=26i=5

第五次循環(huán)S=2隆脕26+5=57i=6

滿足條件S>50

跳出循環(huán)體,輸出i=6

故答案為:6

根據(jù)框圖的流程模擬運(yùn)行程序,直到滿足條件S>50

跳出循環(huán)體,確定輸出的i

的值.

本題考查了直到型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程模擬運(yùn)行程序是解答此類問題的常用方法.【解析】6

三、證明題(共9題,共18分)15、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.16、略

【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.17、略

【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.18、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點;

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.19、略

【分析】【分析】構(gòu)造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.20、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.21、略

【分析】【分析】延長AM,過點B作CD的平行線與AM的延長線交于點F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長AM;過點B作CD的平行線與AM的延長線交于點F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.22、略

【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點.

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=23、略

【分析】【分析】構(gòu)造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.四、作圖題(共4題,共40分)24、略

【分析】【分析】作點A關(guān)于河CD的對稱點A′,當(dāng)水廠位置O在線段AA′上時,鋪設(shè)管道的費(fèi)用最省.【解析】【解答】解:作點A關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.

∵點A與點A′關(guān)于CD對稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費(fèi)用為10000元.25、【解答】圖象如圖所示。

【分析】【分析】描點畫圖即可26、解:程序框圖如下:

【分析】【分析】根據(jù)題意,設(shè)計的程序框圖時需要分別設(shè)置一個累加變量S和一個計數(shù)變量i,以及判斷項數(shù)的判斷框.27、解:程序框圖如下:

【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時,函數(shù)解析式不同,因此當(dāng)給出一個自變量x的值時,必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因為函數(shù)解析式分了三段,所以判斷框需要兩個,即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.五、綜合題(共1題,共8分)28、略

【分析】【分析】(1)由拋物線y=ax2+bx+c過點A(-3;0),B(1,0),得出c與a的關(guān)系,即可得出C點坐標(biāo);

(2)利用已知得出△AOC∽△COB;進(jìn)而求出OC的長度,即可得出a的取值范圍;

(3)作DG⊥y軸于點G,延長DC交x軸于點H,得出拋物線的對稱軸為x=-1,進(jìn)而求出△DCG∽△HCO,得出OH=3,過B作BM⊥DH,垂足為M,即BM=h,根據(jù)h=HBsin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤;即可求出答案;

(4)連接CE,過點N作NP∥CD交y軸于P,連接EF,根據(jù)三角形的面積公式求出S△CAEF=S四邊形EFCB,根據(jù)NP∥CE,求出,設(shè)過N、P兩點的一次函數(shù)是y=kx+b,代入N、P的左邊得到方程組,求出直線NP的解析式,同理求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論