下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
《圓的標準方程》教學(xué)設(shè)計一、教材分析1、教學(xué)內(nèi)容人教B版教科書《數(shù)學(xué)》必修2其次章平面解析幾何初步中2﹒3節(jié)圓的方程。本節(jié)主要爭辯圓的標準方程、一般方程,直線與圓的位置關(guān)系,圓與圓的位置關(guān)系,以及他們在生活中的簡潔運用。教材的地位與作用圓是最簡潔的曲線之一,這節(jié)教材支配在學(xué)習(xí)了直線之后,學(xué)習(xí)三大圓錐曲線之前,旨在生疏曲線和方程的理論為后繼學(xué)習(xí)作好預(yù)備。同時有關(guān)圓的問題,特殊是直線與圓的位置問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決供應(yīng)了基本的思想方法。應(yīng)此教學(xué)中應(yīng)加強練習(xí),使同學(xué)的確把握這單元的學(xué)問和方法。本課是單元的第一課,和直線方程一樣,教學(xué)中先設(shè)計一個問題情景,讓同學(xué)爭辯,并引導(dǎo)同學(xué)觀看圓上點在運動時,不變的是什么,抓住圓的本質(zhì),突破難點。三維目標(1)學(xué)問與技能:把握圓的標準方程的形式;能夠依據(jù)題目給定條件求圓的標準方程;能夠依據(jù)圓的標準方程找到圓心和半徑。(2)過程與方法:加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;增加應(yīng)用數(shù)學(xué)的意識。(3)情感、態(tài)度、價值觀:培育主動探究學(xué)問、合作溝通的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)習(xí)愛好,從而培育勤于思考、勤于動手的良好品質(zhì)。4.教學(xué)重點圓的標準方程的推導(dǎo)以及依據(jù)條件求圓的標準方程5.教學(xué)難點依據(jù)條件求圓的標準方程。二.教法分析高一同學(xué),在老師的引導(dǎo)下,已經(jīng)具備肯定探究與爭辯問題的力量。所以在設(shè)計問題時應(yīng)考慮周全和機敏性,接受啟發(fā)式探究式教學(xué),師生共同探討,共同爭辯,讓同學(xué)樂觀思考,主動學(xué)習(xí)。在教學(xué)過程中接受爭辯法,向同學(xué)供應(yīng)具備啟發(fā)式和思考性的問題。因此,要求同學(xué)在課上爭辯,提高同學(xué)的探究,推理,想象,分析和總結(jié)歸納等方面的力量。三、學(xué)法分析從高考進展的趨勢看,高考越來越重視同學(xué)的分析問題、解決問題的力量。因此,要求同學(xué)在學(xué)習(xí)中遇到問題時,不要急于求成,而要依據(jù)問題供應(yīng)的信息回憶所學(xué)學(xué)問,涉及到轉(zhuǎn)化思想,數(shù)形結(jié)合的思想,應(yīng)用平面解析幾何的相關(guān)學(xué)問。四、教學(xué)過程老師活動:問題:圓的定義是什么?確定圓需要幾個要素?同學(xué)活動:同學(xué)回憶所學(xué)學(xué)問:①是平面內(nèi)的點到定點的距離等于定長的點的集合②確定圓的要素是定點(圓心)和半徑設(shè)計意圖:通過回顧復(fù)習(xí),讓同學(xué)對本課有一個學(xué)問的預(yù)備。老師活動:假如把一個圓放在坐標下,其方程有什么特征,如何寫出這個圓的所在的方程,設(shè)C(a,b)為圓心,r為半徑的圓。而M(x,y)為圓上的任意一點。點與圓有幾種位置關(guān)系同學(xué)活動:同學(xué)爭辯分析:依據(jù)定義圓上的點到圓心的距離為定長,老師引導(dǎo)我們通常建立平面坐標系,畫出圓的圖象:同學(xué)通過觀看,分析得:即老師總結(jié):圓的標準方程;為單位圓同學(xué)通過觀看分析得,點與圓有3種位置關(guān)系點在圓上,點到圓心的距離等于半徑點在圓內(nèi),點到圓心的距離小于半徑點在圓外,點到圓心的距離大于半徑設(shè)計意圖:將幾何學(xué)問用代數(shù)的式子表示出來是一個難點,所以老師要進行適當?shù)囊龑?dǎo),接受師生共同探討的教學(xué)方法老師活動:預(yù)習(xí)自測(1)寫出下列圓的圓心坐標和半徑;(2)寫出圓心為,半徑長等于5的圓的方程推斷點與圓的位置關(guān)系。同學(xué)活動(1)口頭回答(2)三點分別在圓上,圓內(nèi),圓外設(shè)計意圖:同學(xué)對圓已有了初步的生疏,進而把握由圓的方程求圓心和半徑;由圓心和半徑求圓的方程,并推斷點與圓的位置關(guān)系老師活動:例1.依據(jù)下列條件,求圓的方程:(1)圓心在點C(-2,1),并過點A(2,-2);(2)圓心在點C(1,3),并與直線3x-4y-6=0相切;同學(xué)活動:同學(xué)分析并講解答案:(1)(2)(3)設(shè)計意圖:本例題比較簡潔,故接受同學(xué)講解的方式,一方面調(diào)動了同學(xué)的樂觀性,另一方面也熬煉了同學(xué)。老師活動例2.求下列條件所確定的圓的方程:(1)過點A(3,2),圓心在直線y=2x上,且與直線y=2x+5相切.(2)已知圓心為的圓經(jīng)過點和,且圓心在上,求圓心為的圓的標準方程.老師結(jié)合圖形點撥,最終和同學(xué)一起總結(jié),把握題目的本質(zhì)。同學(xué)活動:同學(xué)爭辯探究:分7組爭辯溝通(1)圓心在一條直線上,過一點且與一條直線相切;(2)過兩點且圓心在一條直線上的圓的標準方程的求法,總結(jié)出求圓的標準方程的規(guī)律方法——幾何法和代數(shù)法,做題時肯定要留意數(shù)形結(jié)合。爭辯結(jié)束后,兩個小組到黑板呈現(xiàn),另兩個小組點評設(shè)計意圖:這是本節(jié)課的難點,在例1的基礎(chǔ)上本題有肯定的難度,符合同學(xué)循序漸進、由易到難的的認知規(guī)律,使同學(xué)把握圓的標準方程。既培育了同學(xué)團結(jié)合作精神,又能形成競爭意識。老師活動;變式練習(xí):求下列條件所確定的圓的方程:(1)過,,且圓心在軸上的圓的方程(2)半徑為5,過點(1,2)且與x軸相切的圓的方程同學(xué)回答完后,老師多媒體呈現(xiàn)答案。同學(xué)活動:同學(xué)分析并講解,最終給出答案:設(shè)計意圖;這道題是兩道綜合題,用到了數(shù)形結(jié)合的思想和兩點間的距離公式。進一步鞏固加深圓的標準方程的求法。老師活動;當堂檢測:1.已知,,求以線段為直徑的圓的方程,并推斷點M(6,9),N(3,6),Q(5,-1)在圓上、在圓內(nèi)、還是在圓外?2.以點為圓心且與直線相切的圓的方程為()(A)(B)(C)(D)3、已知圓的圓心在直線上,且與直線切于點,求圓的標準方程.同學(xué)活動:用5分鐘的時間完成這3個題,然后同學(xué)給出答案:2、C3、設(shè)計意圖;檢測本節(jié)課的把握狀況師生共同活動;課堂小結(jié)1.圓的方程的推導(dǎo)步驟,點與圓的位置關(guān)系2.圓的方程的特點:點(a,b)、r分別表示圓心坐標和圓的半徑。3.由不同的已知條件求解圓的標準方程。4.求圓的方程的兩種方法:(1)待定系數(shù)法;(2)定義法。5.數(shù)型結(jié)合的數(shù)學(xué)思想老師活動:布置作業(yè)同學(xué)活動:課后鞏固學(xué)案A層作練習(xí)A,B層全做設(shè)計意圖:作業(yè)布置要有梯度,不能一刀切。板書設(shè)計:2.3.1圓的標準方程一、建立圓的標準方程1、圓的方程的推導(dǎo)2、圓的標準方程的特點,圓心(a,b)定位,r定形3、點與圓的位置關(guān)系二、圓的標準方程的應(yīng)用例1例
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術(shù)學(xué)院《施工技術(shù)與施工組織》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東水利電力職業(yè)技術(shù)學(xué)院《能源化學(xué)工程概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東青年職業(yè)學(xué)院《法語語法II》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級上冊《4.2.3整式的加減》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《第二外語(日語)(II)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名幼兒師范??茖W(xué)?!吨袊F(xiàn)當代文學(xué)經(jīng)典鑒賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東嶺南職業(yè)技術(shù)學(xué)院《數(shù)學(xué)分析實踐教學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 大學(xué)語文(南開大學(xué))學(xué)習(xí)通測試及答案
- 2025新北師大版英語七年級下UNIT 3 Rain or Shine單詞表
- 【名師一號】2020-2021學(xué)年高中英語人教版必修4語篇提能-2
- 屋頂分布式光伏發(fā)電項目施工重點難點分析及應(yīng)對措施
- 退休人員返聘勞動合同三篇
- 中華人民共和國安全生產(chǎn)法知識培訓(xùn)
- 物業(yè)品質(zhì)提升方案課件
- 服裝行業(yè)倉庫管理流程
- “雙減”政策下的學(xué)生心理健康工作總結(jié)
- 八年級上冊語文期中試卷含答案
- 食品工藝學(xué)名詞解釋、簡答題、填空題等
- 中醫(yī)腦癱課件教學(xué)課件
- 糖尿病病人的飲食教育
- 2024年新聞宣傳新聞采編專業(yè)及理論知識考試題附含答案
評論
0/150
提交評論