阿克蘇職業(yè)技術學院《計算機輔助設計》2023-2024學年第一學期期末試卷_第1頁
阿克蘇職業(yè)技術學院《計算機輔助設計》2023-2024學年第一學期期末試卷_第2頁
阿克蘇職業(yè)技術學院《計算機輔助設計》2023-2024學年第一學期期末試卷_第3頁
阿克蘇職業(yè)技術學院《計算機輔助設計》2023-2024學年第一學期期末試卷_第4頁
阿克蘇職業(yè)技術學院《計算機輔助設計》2023-2024學年第一學期期末試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁阿克蘇職業(yè)技術學院

《計算機輔助設計》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的動作識別是一個具有挑戰(zhàn)性的任務。假設要識別一段體育比賽視頻中的運動員動作,以下關于特征選擇的方法,哪一項是不太可行的?()A.提取運動員的身體輪廓和關節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運動員的動作C.計算視頻幀之間的光流變化作為動作特征D.結合空間和時間維度的特征來描述動作2、在計算機視覺的圖像特征提取中,假設要提取對光照、旋轉和縮放具有不變性的特征。以下關于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復雜度高,實時性差B.HOG特征對光照變化適應性強,但對旋轉和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D.沒有一種特征提取方法能夠同時滿足對光照、旋轉和縮放的不變性要求3、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關于模型訓練的挑戰(zhàn),哪一項是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數據用于訓練B.模型的訓練時間過長,難以在短時間內得到結果C.難以評估重建后的圖像質量,沒有明確的標準D.計算資源需求過大,普通計算機難以承受4、在計算機視覺中,目標檢測是一項重要任務。假設要在一張包含多種物體的圖像中準確檢測出汽車的位置和類別。以下關于目標檢測算法的描述,正確的是:()A.傳統的基于特征提取和分類器的方法在復雜場景下檢測效果優(yōu)于深度學習方法B.深度學習中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠實現高精度的目標檢測C.目標檢測算法只關注物體的外觀特征,不考慮物體之間的空間關系D.所有的目標檢測算法對于小目標的檢測都具有同樣出色的性能5、假設要開發(fā)一個能夠對文物進行數字化保護和修復的計算機視覺系統,需要對文物的破損部分進行準確識別和重建。以下哪種技術在文物修復方面可能具有應用潛力?()A.圖像修復算法B.三維重建技術C.虛擬增強現實技術D.以上都是6、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設要在一張街景圖像中識別出店鋪招牌上的文字。以下關于場景文本識別方法的描述,正確的是:()A.基于光學字符識別(OCR)技術的方法對字體和排版的變化適應性強,識別準確率高B.深度學習中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關注文本的內容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復雜的自然場景中準確無誤地識別出各種文字7、當利用計算機視覺進行視頻監(jiān)控中的異常行為檢測,例如打架、盜竊等,以下哪種方法可能有助于準確識別異常行為?()A.建立正常行為模型B.運動軌跡分析C.人群密度估計D.以上都是8、計算機視覺中的圖像配準任務是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設要將兩張拍攝角度不同的城市風景照片進行配準。以下關于圖像配準方法的描述,哪一項是不正確的?()A.可以基于特征點匹配的方法,找到兩張圖像中的對應點,然后計算變換矩陣B.基于灰度信息的配準方法通過比較圖像的像素值來實現配準C.深度學習中的自監(jiān)督學習方法可以用于圖像配準,自動學習圖像之間的對應關系D.圖像配準總是能夠達到像素級別的精確對齊,不存在任何誤差9、在計算機視覺的圖像增強任務中,旨在改善圖像的質量。假設一張低光照條件下拍攝的照片需要增強。以下關于圖像增強方法的描述,哪一項是錯誤的?()A.可以通過直方圖均衡化方法增強圖像的對比度B.基于濾波的方法能夠去除圖像中的噪聲,同時增強細節(jié)C.圖像增強可以無限制地提高圖像的質量,不存在過度增強的問題D.深度學習中的生成對抗網絡(GAN)也可以用于圖像增強10、在計算機視覺的圖像分割任務中,假設要對細胞圖像進行精細分割。以下關于模型選擇的考慮因素,哪一項是不準確的?()A.模型對細胞邊界的捕捉能力B.模型在小樣本數據上的泛化能力C.模型的訓練時間和計算資源需求D.模型的知名度和在學術圈的引用次數11、在計算機視覺的醫(yī)學圖像分析任務中,假設要檢測醫(yī)學圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學圖像的特殊性?()A.結合先驗醫(yī)學知識和圖像特征B.使用通用的圖像檢測算法,不考慮醫(yī)學背景C.只對圖像的部分區(qū)域進行分析,忽略其他部分D.隨機標記圖像中的區(qū)域為腫瘤區(qū)域12、計算機視覺中的特征提取是非常關鍵的一步。以下關于特征提取方法的描述,不準確的是()A.傳統的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場景下仍然有效B.深度學習中的自動特征提取能夠學習到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標檢測等任務的性能D.特征提取只關注圖像的局部信息,而忽略了全局信息13、計算機視覺中的目標跟蹤是指在視頻序列中持續(xù)跟蹤特定目標。假設要跟蹤一個在復雜場景中運動的人物,以下關于目標跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準確預測目標的運動軌跡,但對目標外觀變化適應性差B.基于粒子濾波的跟蹤算法計算復雜度低,適用于實時跟蹤要求高的場景C.基于深度學習的跟蹤算法需要大量的訓練數據,并且在目標被遮擋時容易丟失D.目標跟蹤算法只要在初始幀中準確檢測到目標,就能夠在后續(xù)幀中一直保持跟蹤的準確性14、計算機視覺在體育賽事分析中的應用可以提供更多的數據和見解。假設要分析一場足球比賽中球員的跑動軌跡和動作。以下關于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠對球員的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結果可以直接作為裁判的判罰依據,無需人工復查D.可以結合多攝像頭的信息,獲取更全面和準確的比賽數據15、計算機視覺中的圖像風格遷移是一項有趣的任務。假設要將一幅油畫的風格應用到一張照片上,以下關于模型訓練的要點,哪一項是不正確的?()A.學習油畫和照片的特征表示,找到風格和內容的分離方式B.只關注風格的遷移,不考慮照片原始內容的保留C.采用對抗訓練,使生成的圖像在風格和內容上達到平衡D.調整模型參數,控制風格遷移的強度和效果二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋計算機視覺中的圖像質量評價指標。2、(本題5分)簡述計算機視覺中的語義分割任務。3、(本題5分)描述計算機視覺在地質勘探中的應用。三、應用題(本大題共5個小題,共25分)1、(本題5分)基于深度學習的圖像目標檢測技術,檢測視頻中的多個目標類別和位置。2、(本題5分)利用目標檢測算法,在氣象雷達圖像中檢測龍卷風區(qū)域。3、(本題5分)運用圖像識別技術,檢測工廠倉庫貨物的存儲狀態(tài)。4、(本題5分)開發(fā)一個可以識別不同種類食蟲植物的計算機視覺應用。5、(本題5分)使用目標跟蹤算法,對足球比賽中的足球進行實時跟蹤。四、分析題(本大題共3個小題,共30分)1、(本題10分)分析某

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論