中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題14 函數(shù)中的最值問題(原卷版)_第1頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題14 函數(shù)中的最值問題(原卷版)_第2頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題14 函數(shù)中的最值問題(原卷版)_第3頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題14 函數(shù)中的最值問題(原卷版)_第4頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題14 函數(shù)中的最值問題(原卷版)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

專題14函數(shù)中的最值問題函數(shù)中的最值問題在中考中的考查頻率較高,主要包括求線段之和的最小值(將軍飲馬型)、求線段之和的最小值(修橋模型)、胡不歸求最值問題等。一、求線段之和的最小值(將軍飲馬型)1.在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):A、A'是關(guān)于直線m的對稱點。2.在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線外側(cè):(2)一個點在內(nèi)側(cè),一個點在外側(cè):(3)兩個點都在內(nèi)側(cè):(4)臺球兩次碰壁模型變式一:已知點A、B位于直線m,n的內(nèi)側(cè),在直線n、m分別上求點D、E點,使得圍成的四邊形ADEB周長最短.變式二:已知點A位于直線m,n的內(nèi)側(cè),在直線m、n分別上求點P、Q點PA+PQ+QA周長最短.二、求線段之和的最小值(修橋模型)已知A、B是兩個定點,P、Q是直線m上的兩個動點,P在Q的左側(cè),且PQ間長度恒定,在直線m上要求P、Q兩點,使得PA+PQ+QB的值最小。(原理用平移知識解)(1)點A、B在直線m兩側(cè):過A點作AC//m,且AC長等于PQ長,連接BC,交直線m于Q,Q向左平移PQ長,即為P點,此時P、Q即為所求的點。(2)點A、B在直線m同側(cè):過A點作AE//m,且AE長等于PQ長,作B關(guān)于m的對稱點B',連接B'E,交直線m于Q,Q向左平移PQ長,即為P點,此時P、Q即為所求的點。三、胡不歸求最值(胡不歸模型)一動點P在直線MN外的運動速度為V1,在直線MN上運動的速度為V2,且V1<V2,A、B為定點,點C在直線MN上,確定點C的位置使SKIPIF1<0的值最?。甋KIPIF1<0,記SKIPIF1<0,即求BC+kAC的最小值.構(gòu)造射線AD使得sin∠DAN=k,CH/AC=k,CH=kAC.將問題轉(zhuǎn)化為求BC+CH最小值,過B點作BH⊥AD交MN于點C,交AD于H點,此時BC+CH取到最小值,即BC+kAC最小.在求形如“PA+kPB”的式子的最值問題中,關(guān)鍵是構(gòu)造與kPB相等的線段,將“PA+kPB”型問題轉(zhuǎn)化為“PA+PC”型. (2022·西藏·統(tǒng)考中考真題)在平面直角坐標(biāo)系中,拋物線y=﹣SKIPIF1<0SKIPIF1<0+(m﹣1)x+2m與x軸交于A,B(4,0)兩點,與y軸交于點C,點P是拋物線在第一象限內(nèi)的一個動點.(1)求拋物線的解析式,并直接寫出點A,C的坐標(biāo);(2)如圖甲,點M是直線BC上的一個動點,連接AM,OM,是否存在點M使AM+OM最小,若存在,請求出點M的坐標(biāo),若不存在,請說明理由;(3)如圖乙,過點P作PF⊥BC,垂足為F,過點C作CD⊥BC,交x軸于點D,連接DP交BC于點E,連接CP.設(shè)△PEF的面積為S1,△PEC的面積為S2,是否存在點P,使得SKIPIF1<0最大,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.(1)將B(4,0)代入SKIPIF1<0,求出函數(shù)解析式即可求解;(2)作O點關(guān)于BC的對稱點SKIPIF1<0,連接ASKIPIF1<0交BC于點M,連接BSKIPIF1<0,當(dāng)A、M、SKIPIF1<0三點共線時,AM+OM有最小值,分別求出直線ASKIPIF1<0的解析式和直線BC的解析式,兩直線的交點即為M點;(3)連接PB,過P點作PGSKIPIF1<0y軸交CB于點G,設(shè)SKIPIF1<0,則G(t,-t+4),由SKIPIF1<0求出SKIPIF1<0,再由PFSKIPIF1<0CD,可得SKIPIF1<0則SKIPIF1<0當(dāng)t=2時,SKIPIF1<0有最大值,同時可求P的坐標(biāo).SKIPIF1<0【答案】(1)SKIPIF1<0,A(﹣2,0);C(0,4)(2)存在點M使AM+OM最小,M(SKIPIF1<0,SKIPIF1<0)(3)存在,P(2,4)【詳解】(1)將B(4,0)代入y=﹣SKIPIF1<0SKIPIF1<0+(m﹣1)x+2m,∴﹣8+4(m﹣1)+2m=0,解得m=2,∴y=﹣SKIPIF1<0SKIPIF1<0+x+4,令x=0,則y=4,∴C(0,4),令y=0,則﹣SKIPIF1<0SKIPIF1<0+x+4=0,解得x=4或x=﹣2,∴A(﹣2,0);(2)存在點M使AM+OM最小,理由如下:作O點關(guān)于BC的對稱點SKIPIF1<0,連接ASKIPIF1<0交BC于點M,連接BSKIPIF1<0,由對稱性可知,OM=SKIPIF1<0M,∴AM+OM=AM+SKIPIF1<0MSKIPIF1<0ASKIPIF1<0,當(dāng)A、M、SKIPIF1<0三點共線時,AM+OM有最小值,∵B(4,0),C(0,4),∴OB=OC,∴∠CBO=45°,由對稱性可知∠SKIPIF1<0BM=45°,∴BSKIPIF1<0⊥BO,∴SKIPIF1<0(4,4),設(shè)直線ASKIPIF1<0的解析式為y=kx+b,∴SKIPIF1<0,解得SKIPIF1<0,∴y=SKIPIF1<0x+SKIPIF1<0,設(shè)直線BC的解析式為SKIPIF1<0,∴4SKIPIF1<0+4=0,∴SKIPIF1<0=﹣1,∴y=﹣x+4,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,∴M(SKIPIF1<0);(3)在點P,使得SKIPIF1<0最大,理由如下:連接PB,過P點作PGSKIPIF1<0y軸交CB于點G,設(shè)P(t,﹣SKIPIF1<0SKIPIF1<0+t+4),則G(t,﹣t+4),∴PG=﹣SKIPIF1<0SKIPIF1<0+2t,∵OB=OC=4,∴BC=4SKIPIF1<0,∴S△BCP=SKIPIF1<0×4×(﹣SKIPIF1<0SKIPIF1<0+2t)=﹣SKIPIF1<0+4t=SKIPIF1<0×4SKIPIF1<0×PF,∴PF=﹣SKIPIF1<0SKIPIF1<0+SKIPIF1<0t,∵CD⊥BC,PF⊥BC,∴PFSKIPIF1<0CD,∴SKIPIF1<0=SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∵B、D兩點關(guān)于y軸對稱,∴CD=4SKIPIF1<0,∴SKIPIF1<0=﹣SKIPIF1<0(SKIPIF1<0﹣4t)=﹣SKIPIF1<0SKIPIF1<0+SKIPIF1<0,∵P點在第一象限內(nèi),∴0<t<4,∴當(dāng)t=2時,SKIPIF1<0有最大值SKIPIF1<0,此時P(2,4).本題考查二次函數(shù)的圖像及性質(zhì),熟練掌握二次函數(shù)的圖像及性質(zhì),軸對稱求最短距離的方法,平行線的性質(zhì)是解題的關(guān)鍵.(2022·四川廣元·統(tǒng)考中考真題)在平面直角坐標(biāo)系中,直線y=﹣x﹣2與x軸交于點A,與y軸交于點B,拋物線y=ax2+bx+c(a>0)經(jīng)過A,B兩點,并與x軸的正半軸交于點C.(1)求a,b滿足的關(guān)系式及c的值;(2)當(dāng)a=SKIPIF1<0時,若點P是拋物線對稱軸上的一個動點,求△PAB周長的最小值;(3)當(dāng)a=1時,若點Q是直線AB下方拋物線上的一個動點,過點Q作QD⊥AB于點D,當(dāng)QD的值最大時,求此時點Q的坐標(biāo)及QD的最大值.(1)先求得點A、點B的坐標(biāo),再利用待定系數(shù)法求解即可;(2)先利用對稱性找出△PAB周長最小時點P的位置,此時AP=CP,△PAB的周長最小值為:PB+PA+AB=BC+AB,根據(jù)勾股定理求出AB、BC的長即可求出△PAB最小值;(3)過點Q作QF⊥x軸交于F點,交直線AB于點E,得到∠QED=∠EQD=45°,推出QD=ED=SKIPIF1<0EQ,設(shè)Q(t,t2+t-2),E(t,-t-2),求得QE=-t2-2t,再利用二次函數(shù)的性質(zhì)即可求解.【答案】(1)2a=b+1,c=-2;(2)△PAB的周長最小值是2SKIPIF1<0+2SKIPIF1<0;(3)此時Q(-1,-2),DQ最大值為SKIPIF1<0.【詳解】(1)解:∵直線y=﹣x﹣2與x軸交于點A,與y軸交于點B,∴點A的坐標(biāo)為(-2,0),點B的坐標(biāo)為(0,-2),∵拋物線y=ax2+bx+c(a>0)經(jīng)過A,B兩點,∴SKIPIF1<0,∴2a=b+1,c=-2;(2)解:當(dāng)a=SKIPIF1<0時,則b=-SKIPIF1<0,∴拋物線的解析式為y=SKIPIF1<0x2-SKIPIF1<0x-2,拋物線的對稱軸為直線x=1,∵點A的坐標(biāo)為(-2,0),∴點C的坐標(biāo)為(4,0),△PAB的周長為:PB+PA+AB,且AB是定值,∴當(dāng)PB+PA最小時,△PAB的周長最小,∵點A、C關(guān)于直線x=1對稱,∴連接BC交直線x=1于點P,此時PB+PA值最小,∵AP=CP,∴△PAB的周長最小值為:PB+PA+AB=BC+AB,∵A(-2,0),B(0,-2),C(4,0),∴OA=2,OB=2,OC=4,由勾股定理得BC=2SKIPIF1<0,AB=2SKIPIF1<0,∴△PAB的周長最小值是:2SKIPIF1<0+2SKIPIF1<0.(3)解:當(dāng)a=1時,b=1,∴拋物線的解析式為y=x2+x-2,過點Q作QF⊥x軸交于F點,交直線AB于點E,∵A(-2,0),B(0,-2),∴OA=OB,∴∠OAB=45°,∵QD⊥AB,∴∠AEF=∠QED=∠EQD=45°,∴QD=ED=SKIPIF1<0EQ,設(shè)Q(t,t2+t-2),E(t,-t-2),∴QE=-t-2-(t2+t-2)=-t2-2t,∴DQ=SKIPIF1<0QE=-SKIPIF1<0(t2+2t)=-SKIPIF1<0(t+1)2+SKIPIF1<0,當(dāng)t=-1時,DQ有最大值SKIPIF1<0,此時Q(-1,-2).本題是二次函數(shù)的綜合題,熟練掌握二次函數(shù)的圖象及性質(zhì),等腰直角三角形的性質(zhì)是解題的關(guān)鍵.(2022·天津·統(tǒng)考中考真題)已知拋物線SKIPIF1<0(a,b,c是常數(shù),SKIPIF1<0)的頂點為P,與x軸相交于點SKIPIF1<0和點B.(1)若SKIPIF1<0,①求點P的坐標(biāo);②直線SKIPIF1<0(m是常數(shù),SKIPIF1<0)與拋物線相交于點M,與SKIPIF1<0相交于點G,當(dāng)SKIPIF1<0取得最大值時,求點M,G的坐標(biāo);(2)若SKIPIF1<0,直線SKIPIF1<0與拋物線相交于點N,E是x軸的正半軸上的動點,F(xiàn)是y軸的負(fù)半軸上的動點,當(dāng)SKIPIF1<0的最小值為5時,求點E,F(xiàn)的坐標(biāo).(1)①將b、c的值代入解析式,再將A點坐標(biāo)代入解析式即可求出a的值,再用配方法求出頂點坐標(biāo)即可;②先令y=0得到B點坐標(biāo),再求出直線BP的解析式,設(shè)點M的坐標(biāo)為SKIPIF1<0,則點G的坐標(biāo)為SKIPIF1<0,再表示出MG的長,配方求出最值得到M、G的坐標(biāo);(2)根據(jù)SKIPIF1<0,解析式經(jīng)過A點,可得到解析式:SKIPIF1<0,再表示出P點坐標(biāo),N點坐標(biāo),接著作點P關(guān)于y軸的對稱點SKIPIF1<0,作點N關(guān)于x軸的對稱點SKIPIF1<0,再把SKIPIF1<0和SKIPIF1<0的坐標(biāo)表示出來,由題意可知,當(dāng)SKIPIF1<0取得最小值,此時SKIPIF1<0,將字母代入可得:SKIPIF1<0,求出a的值,即可得到E、F的坐標(biāo);【答案】(1)①SKIPIF1<0;②點M的坐標(biāo)為SKIPIF1<0,點G的坐標(biāo)為SKIPIF1<0;(2)點SKIPIF1<0和點SKIPIF1<0;【詳解】(1)①∵拋物線SKIPIF1<0與x軸相交于點SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0,得SKIPIF1<0.∴拋物線的解析式為SKIPIF1<0.∵SKIPIF1<0,∴點P的坐標(biāo)為SKIPIF1<0.②當(dāng)SKIPIF1<0時,由SKIPIF1<0,解得SKIPIF1<0.∴點B的坐標(biāo)為SKIPIF1<0.設(shè)經(jīng)過B,P兩點的直線的解析式為SKIPIF1<0,有SKIPIF1<0解得SKIPIF1<0∴直線SKIPIF1<0的解析式為SKIPIF1<0.∵直線SKIPIF1<0(m是常數(shù),SKIPIF1<0)與拋物線SKIPIF1<0相交于點M,與SKIPIF1<0相交于點G,如圖所示:∴點M的坐標(biāo)為SKIPIF1<0,點G的坐標(biāo)為SKIPIF1<0.∴SKIPIF1<0.∴當(dāng)SKIPIF1<0時,SKIPIF1<0有最大值1.此時,點M的坐標(biāo)為SKIPIF1<0,點G的坐標(biāo)為SKIPIF1<0.(2)由(1)知SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.SKIPIF1<0∴拋物線的解析式為SKIPIF1<0.∵SKIPIF1<0,∴頂點P的坐標(biāo)為SKIPIF1<0.∵直線SKIPIF1<0與拋物線SKIPIF1<0相交于點N,∴點N的坐標(biāo)為SKIPIF1<0.作點P關(guān)于y軸的對稱點SKIPIF1<0,作點N關(guān)于x軸的對稱點SKIPIF1<0,如圖所示:得點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.當(dāng)滿足條件的點E,F(xiàn)落在直線SKIPIF1<0上時,SKIPIF1<0取得最小值,此時,SKIPIF1<0.延長SKIPIF1<0與直線SKIPIF1<0相交于點H,則SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0.∴SKIPIF1<0.解得SKIPIF1<0(舍).∴點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.則直線SKIPIF1<0的解析式為SKIPIF1<0.∴點SKIPIF1<0和點SKIPIF1<0.本題考查二次函數(shù)的幾何綜合運用,熟練掌握待定系數(shù)法求函數(shù)解析式、配方法求函數(shù)頂點坐標(biāo)、勾股定理解直角三角形等是解決此類問題的關(guān)鍵.1.(2022·山東濟南·校考一模)如圖,直線SKIPIF1<0與x軸交于點A,與y軸交于點C,拋物線SKIPIF1<0過點A.(1)求出拋物線解析式的一般式;(2)拋物線上的動點D在一次函數(shù)的圖象下方,求SKIPIF1<0面積的最大值,并求出此時點D的坐標(biāo);(3)若點P為x軸上任意一點,在(2)的結(jié)論下,求SKIPIF1<0的最小值.2.(2022·重慶銅梁·統(tǒng)考一模)如圖1,二次函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象與x軸交于點A,B,與y軸交于點C,SKIPIF1<0,點SKIPIF1<0.(1)求二次函數(shù)的解析式;(2)如圖2,點P是直線SKIPIF1<0上方拋物線上一點,SKIPIF1<0SKIPIF1<0軸交SKIPIF1<0于點D,SKIPIF1<0SKIPIF1<0交x軸于點E,求SKIPIF1<0的最大值;(3)在(2)的條件下,當(dāng)SKIPIF1<0取最大值時,點M在該拋物線的對稱軸上,滿足SKIPIF1<0的周長最小,點N為該坐標(biāo)平面內(nèi)一點,是否存在以點A,B,M,N為頂點的平行四邊形,若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.3.(2022·廣東中山·統(tǒng)考三模)如圖,拋物線SKIPIF1<0與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸為直線SKIPIF1<0,點SKIPIF1<0,過B的直線交y軸于點D,交拋物線于E,且SKIPIF1<0.(1)求拋物線的解析式;(2)在拋物線第四象限的圖象上找一點P,使得SKIPIF1<0的面積最大,求出點P的坐標(biāo);(3)點M是線段BE上的一點,求SKIPIF1<0的最小值,并求出此時點M的坐標(biāo).4.(2022·貴州黔東南·統(tǒng)考二模)如圖,拋物線SKIPIF1<0與x軸交于點SKIPIF1<0、SKIPIF1<0,與y軸交于點C.(1)求拋物線的解析式;(2)點M是拋物線對稱軸上的動點,求SKIPIF1<0的最小值;(3)若點P是直線AC下方拋物線上的動點,過點P作SKIPIF1<0于點Q,線段PQ是否存在最大值?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由.5.(2022·遼寧沈陽·沈陽市第七中學(xué)??寄M預(yù)測)如圖,拋物線SKIPIF1<0經(jīng)過點SKIPIF1<0SKIPIF1<0和點SKIPIF1<0SKIPIF1<0,且與SKIPIF1<0軸交于點SKIPIF1<0.(1)分別求拋物線和直線SKIPIF1<0的解析式;(2)在SKIPIF1<0軸上有一動點SKIPIF1<0,拋物線上有一動點SKIPIF1<0,是否存在以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點的四邊形是平行四邊形?若存在,求出點SKIPIF1<0的坐標(biāo);若不存在,請說明理由;(3)點SKIPIF1<0為拋物線上位于直線SKIPIF1<0上方的一點,過點SKIPIF1<0作SKIPIF1<0軸交直線SKIPIF1<0于點SKIPIF1<0,點SKIPIF1<0為對稱軸上一動點,當(dāng)線段SKIPIF1<0的長度最大時,求SKIPIF1<0的最小值.6.(2022·黑龍江大慶·統(tǒng)考一模)如圖,已知拋物線SKIPIF1<0與x軸相交于SKIPIF1<0,SKIPIF1<0兩點,與y軸相交于點SKIPIF1<0,拋物線的頂點為D.(1)求拋物線的解析式;(2)若P是直線BC下方拋物線上任意一點,過點P作SKIPIF1<0軸于點H,與BC交于點M.①求線段PM長度的最大值.②在①的條件下,若F為y軸上一動點,求SKIPIF1<0的最小值.7.(2022·山東臨沂·統(tǒng)考一模)如圖,拋物線SKIPIF1<0與x軸交于A、B兩點,與y軸交于點C,直線SKIPIF1<0過B、C兩點,連接AC.(1)求拋物線的解析式.(2)點M(3,1)是拋物線上的一點,點D為拋物線上位于直線BC上方的一點,過點D作DE⊥x軸交直線BC于點E,點P為拋物線對稱軸上一動點,當(dāng)線段DE的長度最大時,求PD+PM的最小值.8.(2021·貴州遵義·??级#┰谄矫嬷苯亲鴺?biāo)系中,有一拋物線SKIPIF1<0:SKIPIF1<0,頂點為SKIPIF1<0,點SKIPIF1<0,SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0軸的垂線交拋物線于點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得SKIPIF1<0.把SKIPIF1<0向右平移,當(dāng)點SKIPIF1<0剛好落在拋物線上時得SKIPIF1<0,點SKIPIF1<0,SKIPIF1<0的對應(yīng)點分別是點SKIPIF1<0、SKIPIF1<0,如圖(1).(1)線段SKIPIF1<0的長為__________,直角三角形平移的距離是__________,拋物線的對稱軸是直線SKIPIF1<0__________;(2)將SKIPIF1<0繞著點SKIPIF1<0沿逆時針方向旋轉(zhuǎn),點SKIPIF1<0、SKIPIF1<0的對應(yīng)點分別記為點SKIPIF1<0、SKIPIF1<0,當(dāng)點SKIPIF1<0落在拋物線的對稱軸上時,在直線SKIPIF1<0的下方的拋物線上有一點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0軸的平行線交直線SKIPIF1<0于點SKIPIF1<0.線段SKIPIF1<0的長是否存在最大值,若存在,求出點SKIPIF1<0的坐標(biāo),若不存在,說明理由;(3)在(2)的條件下,SKIPIF1<0繼續(xù)旋轉(zhuǎn),當(dāng)點SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論