版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023屆云南省迪慶州香格里拉中學高三畢業(yè)生復習統(tǒng)一檢測試題數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)和復數(shù),則為A. B. C. D.2.中,,為的中點,,,則()A. B. C. D.23.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.4.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.5.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.116.波羅尼斯(古希臘數(shù)學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.7.設,滿足,則的取值范圍是()A. B. C. D.8.為研究語文成績和英語成績之間是否具有線性相關關系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據(jù)圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值9.函數(shù)的大致圖象是A. B. C. D.10.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要11.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.12.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的值域為_________.14.設函數(shù),當時,記最大值為,則的最小值為______.15.已知一個圓錐的底面積和側面積分別為和,則該圓錐的體積為________16.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當時,求的面積;(2)設直線與橢圓的另一個交點為,當為中點時,求的值.18.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.20.(12分)已知函數(shù),其導函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.21.(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大??;(2)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.22.(10分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內(nèi)角,,所對的邊分別為,,,三邊,,與面積滿足關系式:,且,求的面積的值(或最大值).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
利用復數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數(shù)的三角形式的乘法運算法則是解題的關鍵,復數(shù)問題高考必考,常見考點有:點坐標和復數(shù)的對應關系,點的象限和復數(shù)的對應關系,復數(shù)的加減乘除運算,復數(shù)的模長的計算.2.D【解析】
在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.3.B【解析】
求導函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應用導數(shù)研究函數(shù)圖象的走向,利用數(shù)形結合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.4.B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關的新定義問題,其本質(zhì)在于弄清計數(shù)原理,分類討論,分別求解.5.D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎題目.6.D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.7.C【解析】
首先繪制出可行域,再繪制出目標函數(shù),根據(jù)可行域范圍求出目標函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數(shù)在點處取得最小值,故目標函數(shù)的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標函數(shù)的取值范圍的問題,屬于基礎題.8.B【解析】
根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).9.A【解析】
利用函數(shù)的對稱性及函數(shù)值的符號即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數(shù)圖象的判斷,函數(shù)對稱性的應用,屬于中檔題.10.B【解析】
利用充分條件、必要條件與集合包含關系之間的等價關系,即可得出?!驹斀狻吭O對應的集合是,由解得且對應的集合是,所以,故是的必要不充分條件,故選B?!军c睛】本題主要考查充分條件、必要條件的判斷方法——集合關系法。設,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。11.C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎題.12.A【解析】
作出函數(shù)的圖象,得到,把函數(shù)有零點轉(zhuǎn)化為與在(2,4]上有交點,利用導數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數(shù)零點的判定,考查數(shù)學轉(zhuǎn)化思想方法與數(shù)形結合的解題思想方法,訓練了利用導數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用換元法,得到,利用導數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導數(shù)求解函數(shù)的單調(diào)性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.14.【解析】
易知,設,,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設,,令,當時,,所以單調(diào)遞減令,當時,,所以單調(diào)遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.15.【解析】
依據(jù)圓錐的底面積和側面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積。【詳解】設圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為?!军c睛】本題主要考查圓錐的底面積、側面積和體積公式的應用。16.【解析】
將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或【解析】
(1)聯(lián)立直線的方程和橢圓方程,求得交點的橫坐標,由此求得三角形的面積.(2)法一:根據(jù)的坐標求得的坐標,將的坐標都代入橢圓方程,化簡后求得的坐標,進而求得的值.法二:設出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關系,結合求得點的坐標,進而求得的值.【詳解】(1)設,,若,則直線的方程為,由,得,解得,,設直線與軸交于點,則且.(2)法一:設點因為,,所以又點,都在橢圓上,所以解得或所以或.法二:設顯然直線有斜率,設直線的方程為由,得所以又解得或所以或所以或.【點睛】本小題主要考查直線和橢圓的位置關系,考查橢圓中三角形面積的求法,考查運算求解能力,屬于中檔題.18.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結合正弦定理可得到,利用,,可得到,進而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點睛】本題考查了正弦定理、余弦定理在解三角形中的運用,考查了三角形的面積公式,考查了學生分析問題、解決問題的能力,屬于基礎題.19.(1)(2)【解析】
(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因為,所以,當且僅當時,等號成立,故的最小值是3.【點睛】本題考查了解不等式,均值不等式求最值,意在考查學生的計算能力和轉(zhuǎn)化能力.20.(1)(2)證明見解析【解析】
(1)求出的導數(shù),根據(jù)導函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構造函數(shù),利用導數(shù)判斷在區(qū)間上單調(diào)遞減,結合可得結果.【詳解】(1)若,則.設,則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當時,;當時,;當時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設,再令,,在上單調(diào)遞減,又,,,,,.即【點睛】本題考查利用函數(shù)的導數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新版五年級英語下冊教案
- 上課遲到檢討書(合集15篇)
- 行業(yè)調(diào)研報告匯編4篇
- 中考熱點素材集合15篇
- 電子公司實習報告匯編7篇
- 《呼蘭河傳》讀書筆記(15篇)
- 邊城讀書筆記(15篇)
- 喹諾酮類抗菌藥物合理使用的理性思考
- 七年級地理教學工作計劃范例(20篇)
- 入伍保留勞動關系協(xié)議書(2篇)
- 電動三輪車監(jiān)理細則
- 《鋁及鋁合金厚板殘余應力測試方法 切縫翹曲法》
- 知識創(chuàng)新與學術規(guī)范中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 企業(yè)貸款書面申請書
- 人教五年級英語上冊2011版五年級英語上冊《Lesson17》教案及教學反思
- 交換機安裝調(diào)試記錄表實用文檔
- 理性思維作文素材800字(通用范文5篇)
- 應急物資清單明細表
- 房地產(chǎn)估計第八章成本法練習題參考
- 《社會主義核心價值觀》優(yōu)秀課件
- 《妊娠期糖尿病患者個案護理體會(論文)3500字》
評論
0/150
提交評論