2025屆黑龍江省綏化市望奎縣第二中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁
2025屆黑龍江省綏化市望奎縣第二中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁
2025屆黑龍江省綏化市望奎縣第二中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁
2025屆黑龍江省綏化市望奎縣第二中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁
2025屆黑龍江省綏化市望奎縣第二中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆黑龍江省綏化市望奎縣第二中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”2.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號(hào)是()A.①③ B.②④ C.①②③ D.②③④3.如圖,在正方體中,已知、、分別是線段上的點(diǎn),且.則下列直線與平面平行的是()A. B. C. D.4.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.145.已知數(shù)列滿足,則()A. B. C. D.6.在四邊形中,,,,,,點(diǎn)在線段的延長線上,且,點(diǎn)在邊所在直線上,則的最大值為()A. B. C. D.7.若的展開式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.8.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.9.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.10.已知雙曲線,為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.11.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.412.已知向量滿足,且與的夾角為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最大值為__________.14.已知向量=(-4,3),=(6,m),且,則m=__________.15.已知實(shí)數(shù),滿足約束條件則的最大值為________.16.已知的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,則展開式所有項(xiàng)系數(shù)之和為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.18.(12分)如圖,直三棱柱中,分別是的中點(diǎn),.(1)證明:平面;(2)求二面角的余弦值.19.(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯(cuò)誤的概率為q,若選擇正確則加1分,選擇錯(cuò)誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;(2)當(dāng),時(shí),求且的概率.20.(12分)曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線,的交點(diǎn)分別為、(、異于原點(diǎn)),當(dāng)斜率時(shí),求的最小值.21.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)寫出圓C的直角坐標(biāo)方程;(2)設(shè)直線l與圓C交于A,B兩點(diǎn),,求的值.22.(10分)已知橢圓的左右焦點(diǎn)分別為,焦距為4,且橢圓過點(diǎn),過點(diǎn)且不平行于坐標(biāo)軸的直線交橢圓與兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線交軸于點(diǎn).(1)求的周長;(2)求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,屬于基礎(chǔ)題.2、B【解析】

利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.3、B【解析】

連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.4、D【解析】

做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.5、C【解析】

利用的前項(xiàng)和求出數(shù)列的通項(xiàng)公式,可計(jì)算出,然后利用裂項(xiàng)法可求出的值.【詳解】.當(dāng)時(shí),;當(dāng)時(shí),由,可得,兩式相減,可得,故,因?yàn)橐策m合上式,所以.依題意,,故.故選:C.【點(diǎn)睛】本題考查利用求,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于中等題.6、A【解析】

依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,由,,,,,,,因?yàn)辄c(diǎn)在線段的延長線上,設(shè),解得,所在直線的方程為因?yàn)辄c(diǎn)在邊所在直線上,故設(shè)當(dāng)時(shí)故選:【點(diǎn)睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.7、C【解析】展開式的通項(xiàng)為,因?yàn)檎归_式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).8、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.9、C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.10、D【解析】

根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點(diǎn)睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點(diǎn)到漸近線的距離等于虛軸長度的一半.11、D【解析】

先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因?yàn)槌傻缺葦?shù)列,所以,解得.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式.屬于簡單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.12、A【解析】

根據(jù)向量的運(yùn)算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點(diǎn)睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時(shí),取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.14、8.【解析】

利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.15、1【解析】

作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.16、64【解析】

由題意先求得的值,再令求出展開式中所有項(xiàng)的系數(shù)和.【詳解】的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點(diǎn)睛】本題考查了二項(xiàng)式定理,考查了賦值法求多項(xiàng)式展開式的系數(shù)和,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點(diǎn),∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點(diǎn),,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因?yàn)樗倪呅问蔷匦?,,,,設(shè)幾何體的體積為,則,∴,即:.【點(diǎn)睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計(jì)算能力.18、(1)證明見解析(2)【解析】

(1)連接交于點(diǎn),由三角形中位線定理得,由此能證明平面.(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【詳解】證明:證明:連接交于點(diǎn),則為的中點(diǎn).又是的中點(diǎn),連接,則.因?yàn)槠矫?,平面,所以平面.?)由,可得:,即所以又因?yàn)橹崩庵砸渣c(diǎn)為坐標(biāo)原點(diǎn),分別以直線為軸、軸、軸,建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則且,可解得,令,得平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,則所以二面角的余弦值為.【點(diǎn)睛】本題主要考查直線與平面平行、二面角的概念、求法等知識(shí),考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)見解析,0(2)【解析】

(1)即該選手答完3道題后總得分,可能出現(xiàn)的情況為3道題都答對(duì),答對(duì)2道答錯(cuò)1道,答對(duì)1道答錯(cuò)2道,3道題都答錯(cuò),進(jìn)而求解即可;(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的題數(shù)是3題,又,則第一題答對(duì),第二題第三題至少有一道答對(duì),進(jìn)而求解.【詳解】解:(1)的取值可能為,,1,3,又因?yàn)?故,,,,所以的分布列為:13所以(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的題數(shù)是3題,又已知,第一題答對(duì),若第二題回答正確,則其余6題可任意答對(duì)3題;若第二題回答錯(cuò)誤,第三題回答正確,則后5題可任意答對(duì)題,此時(shí)的概率為(或).【點(diǎn)睛】本題考查二項(xiàng)分布的分布列及期望,考查數(shù)據(jù)處理能力,考查分類討論思想.20、(1)的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程.(2)【解析】

(1)消去參數(shù),可得曲線的直角坐標(biāo)方程,再利用極坐標(biāo)與直角坐標(biāo)的互化,即可求解.(2)解法1:設(shè)直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,得,得出,利用基本不等式,即可求解;解法2:設(shè)直線的極坐標(biāo)方程為,分別代入曲線,的極坐標(biāo)方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標(biāo)方程為,即,則曲線的極坐標(biāo)方程為,即,又因?yàn)榍€的極坐標(biāo)方程為,即,根據(jù),代入即可求解曲線的直角坐標(biāo)方程.(2)解法1:設(shè)直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,,,即,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最小值為.解法2:設(shè)直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論