版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PNAS
PNASNexus,2024,3,pgae515
eUS
/10.1093/pnasnexus/pgae515
Advanceaccesspublication15November2024
ResearchReport
Stronglongtiesfacilitateepidemiccontainmentonmobilitynetworks
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
JianhongMou
o
a
,1,SuoyiTan
a
,1,JuanjuanZhang
b
,
c
,1,BinSai
a
,MengningWang
a
,BitaoDai
a
,Bo-WenMing
o
b
,ShanLiu
d
,
ZhenJine
,GuiquanSun
e
,f
,HongjieYu
b
,
c
,g
,*
andXinLu
a
,
*
a
CollegeofSystemsEngineering,NationalUniversityofDefenseTechnology,Changsha410073,China
b
DepartmentofEpidemiology,SchoolofPublicHealth,KeyLaboratoryofPublicHealthSafety,MinistryofEducation,FudanUniversity,Shanghai200032,China
c
ShanghaiInstituteofInfectiousDiseaseandBiosecurity,FudanUniversity,Shanghai200032,China
d
SchoolofManagement,Xi’anJiaotongUniversity,Xi’an710049,China
e
ComplexSystemsResearchCenter,ShanxiUniversity,Taiyuan030006,Shanxi,China
f
DepartmentofMathematics,NorthUniversityofChina,Taiyuan030051,Shanxi,China
g
DepartmentofInfectiousDiseases,HuashanHospital,FudanUniversity,Shanghai200032,China
*Towhomcorrespondenceshouldbeaddressed:Email:
xin.lu.lab@
(X.L.);Email:
yhj@
(H.Y.)1J.M.,S.T.,andJ.Z.contributedequallytothiswork.
EditedByMatjazPerc
Abstract
Theanalysisofconnectionstrengthsanddistancesinthemobilitynetworkispivotalfordelineatingcriticalpathways,particularlyinthecontextofepidemicpropagation.Localconnectionsthatlinkproximatedistrictstypicallyexhibitstrongweights.However,tiesthatbridgedistantregionswithhighlevelsofinteractionintensity,termedstronglong(SL)ties,warrantincreasedscrutinyduetotheirpotentialtofostersatelliteepidemicclustersandextendthedurationofpandemics.Inthisstudy,SLtiesareidentifiedasoutliersonthejointdistributionofdistanceandflowinthemobilitynetworkofShanghaiconstructedfrom1km×1kmhigh-resolutionmobilitydata.Weproposeagrid-jointisolationstrategyalongsideareaction–diffusiontransmissionmodeltoassesstheimpactofSLtiesonepidemicpropagation.ThefindingsindicatethatregionsconnectedbySLtiesexhibitasmallspatialautocorrelationanddisplayatemporalsimilaritypatternindiseasetransmission.Grid-jointisolationbasedonSLtiesreducescumulativeinfectionsbyanaverageof17.1%comparedwithothertypesofties.Thisworkhighlightsthenecessityofidentifyingandtargetingpotentiallyinfectedremoteareasforspatiallyfocusedinterventions,therebyenrichingourcomprehensionandmanagementofepidemicdynamics.
Keywords:stronglongties,epidemiccontainment,mobilitynetworks,reaction–diffusiontransmissionmodel,grid-jointisolationstrategy
SignificanceStatement
Thisstudyilluminatesthedifferentiationbetweenthestrengthandlengthofconnectionsonmobilitynetworks.Ourresearchrevealsthatconnectionsbridgingdistantregionswithhighinteractionintensity,termedstronglong(SL)ties,exhibitlowspatialautocorrel-ationanddisplayatemporalsimilaritypatternindiseasetransmission,potentiallyfosteringsatelliteepidemicclustersandextendingthedurationofpandemics.Thesuperiorityofgrid-jointisolationstrategybasedonSLtiessuggeststhattheadoptionofadvancedisolationstrategiestargetingremotegrids,whichmaintainhigh-flowconnectionstoinfectedgrids,isimperativefortheformulationofeffectivepolicies.OurworkprovidesdifferentperspectivesforassessingtheroleofSLtiesinnetworkdynamics,deepeningourcomprehensionofvariousrealms,includingeconomics,social,andbiologicalsystems.
Introduction
Althoughtiesserveascrucialchannelsinepidemicspreading,theirimpactsvarydependingonthetypeoftiesinvolved,includ-ingpositiveandnegativeedgesonsignednetworks(
1
),andinter-communitylinksoncommunity-relatednetworks(
2
).Moreover,severalstudieshighlightthedecisiveroleofintensityinshapingepidemicpropagationinmobilitynetworks(
3
,
4
).Researchacrossvariousdisciplineshasextensivelyexaminedtheimpactsoflong
ties(LG),focusingontheirspatialextent(
5
–
7
)andtierange(
8
,
9
).ThesestudiescollectivelyhighlightthefundamentalroleofLGinbridgingcrucialstructuresacrossvariousnetworks.LGserveascriticalchannelsfortherapiddisseminationofnovelinformationandthespreadofcontagiousbehaviors,underscoringtheirsignifi-canceinunderstandingandmanagingthedynamicsofsocial(
10
),biological(
11
),andepidemiologicalphenomena(
12
–
15)
.Inthecon-textofhumanmobility,infectiousdiseasesfrequentlytranscend
CompetingInterest:H.Y.hasreceivedresearchfundingfromSanofiPasteur,GlaxoSmithKline,YichangHECChangjiangPharmaceuticalCompany,ShanghaiRochePharmaceuticalCompany,andSINOVACBiotechLtd.Noneofthisfundingisrelatedtothisresearch.Alloth-erauthorsdeclarenocompetinginterests.
Received:August9,2024.Accepted:October28,2024
?TheAuthor(s)2024.PublishedbyOxfordUniversityPressonbehalfofNationalAcademyofSciences.ThisisanOpenAccessarticle
distributedunderthetermsoftheCreativeCommonsAttributionLicense(
/licenses/by/4.0/
),whichpermitsunrestrictedreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
2|PNASNexus,2024,Vol.3,No.11
localizedgeographicalregions,spreadingrapidlyacrosscoun-triesandcontinents.Thisproliferationislargelyfacilitatedbythemovementofinfectedindividualsoverlargespatialscales(
4
,
16
–
18
).Suchlong-distancedispersalisgenerallyanticipatedtoacceleratetheviralspreadwithinanextensivepopulation(
19
).Onceaninfectedindividualtravelsfromtheprimaryout-breakspottoanunaffectedremoteone,ittriggerstheemergenceofanewinfectioussubpopulation,knownasasatellitecluster.Thesenascentclusterscansubsequentlyexpand,potentiallyservingasthesourceforfurtherlong-distancespreadofthedis-ease.Thelimitedoverlapbetweentheinitialoutbreakandsatel-liteclustersoftenresultsinmoreextensiveinfectionsacrossawiderspatialscope.
LGareoftenstructurallycategorizedasweakties(
20
–
22
),pro-vidinguniqueinformationalbenefitsnotreadilyavailablethroughclosercontacts
(23
–
25
).Strongties(ST),regardingthetopologicalproximityofassociatednodes,aretheoreticallyproventofacili-tatetheepidemicprevalence(
3
).However,theirsignificanceinmobilitycontexts,particularlyinurbanenvironments,necessi-tatesareevaluationoftheirperceivedweaknessandadistinctionbetweenthelengthandstrengthofties
(26
).Highmobilityacrossdistantlocationsfacilitatedbypoint-to-pointtransportationunderscoresthesignificanceofthesetiesoverextendedspans
(27
,
28
).Ithasbeenhighlyrecommendedthatthesetravelsbere-tainedasmuchaspossibletoextractspatialnetworkstructurefromlarge-scaleorigin–destinationflowdata(
29)
.Notably,insomeinstances,hightrafficvolumesonlong-distanceroutes,suchasthoseconnectingairportsandrailstations,surpassthoseofnearbytravel.Theefficacyofpublictransportationshutdowns,specificallylong-distancebuses,inmitigatingthespreadofacity-wideepidemic
(30
),underscoresthepivotalroleoflong-distancetiescharacterizedbysignificantmobility,referredtoasstronglong(SL)ties.Severingthesetiesaidsincontainingdiseaseswithinlocalizedareas,therebyacceleratingepidemicextinction,espe-ciallywhendetailedtrajectoriesofinfectedindividualsareun-known.Mobiledevicedata,especiallyderivedfromcalldetailrecords(
31
–
33
),facilitatestheidentificationofSLtiesandaidsinunderstandingepidemicpropagationonacitywidescale.However,amajorityofstudies(
34
,
35
)employmobilitydatawithlowspatialresolution,rangingfromafewtodozensofkilo-meters,limitingthein-depthinvestigationneededtodistinguishthelengthandstrengthofmobilityties.
Numerousresearchershaveconfirmedtheeffectivenessofnonpharmaceuticalinterventions(NPIs)incontrollingthespreadofphysical-contactdiseases,includingsocialnetwork-baseddis-tancing
(36
),contacttracing
(37
),citywidelockdown(
38
),andetal.Theimpactofcommunitystructureonepidemicsoffersvaluableinsightsforpreventingdiseasespreadbetweencommu-nitiesbychangingthestructureofthecontactnetworkthroughNPIs
(39
,
40
).Inter-communityties,oneofthetypesofLG,playacrucialroleinepidemiccontrolfortheprofoundimpactofcom-munitystructureonnetworkdynamics,yieldingtheoutperform-anceofimmunizinginterventionstargetedatindividualsbridgingcommunitiescomparedwiththosetargetinghighlyconnectedin-dividuals(
40
).However,theseapproachesmayunderestimatetheriskposedbyunconfirmedinfectedindividualstravelingtodis-tantdistricts,whichcouldpotentiallyfacilitatefurthertransmis-sion.ThestrengthofLGisalsovital,becauseitservesasacriticalindicatorforidentifyingremoteareaswhereunconfirmedin-fectedindividualsmightbelocated,therebyaidinginthepre-emptivecontainmentofpotentialinfectionhotspots.Despiteitssignificance,limitedresearchhasbeenconductedonthestrengthofLG,particularlyindifferentiatingbetweenLGandSLties,
letalonethequantificationandidentificationofSLties.Additionally,itremainsuncertainwhetherthevitalityofgridsconnectedtotheinitialoutbreakviaSLtiesexceedsthatofgridsconnectedbyothertypesofties.Thisraisesacriticaldecisionpointforpolicymakers:whetherlimitingrestrictionstogeograph-icalneighboringareassuffices,orifitisnecessarytoexpandcon-tainmenteffortstoremoteregionsconnectedbySLties.Thisuncertaintyunderscorestheneedforanuancedanalysisofhu-manmobilitypatternsandtheirinfluenceondiseasespread.
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Thisworkemphasizesconnectionsthatpossessbothspatialandsocialcharacteristics,takingintoaccountthespatialheterogeneityoftheintensitydistribution,ratherthanfocusingsolelyonsingleattributesliketheedgepositionorsignedattributes.WealsointendtothoroughlyevaluatethesignificanceofSLtiesinidentifyingpo-tentiallyhazardousareas.Specifically,gridsconnectedbySLtiestotheinitialoutbreaksitearemorelikelytoformsatelliteclusters,giventhepositivecorrelationbetweentransmissionprobabilityandpopulationflow.Initially,wequantifyandcharacterizeSLtiesforeach1km×1kmgridinShanghaibyaggregatingdistanceandpopulationflowfromhigh-resolutioncellularsignalingdata(CSD).Weproposeagrid-jointisolationstrategythatsupportspre-emptivequarantineforunconfirmedgridsreceivingindividualsfromconfirmedones,inwhichareaction–diffusiontransmission(RDT)modelisestablishedtosimulatethespreadoftheOmicronvariantofSARS-CoV-2crossgridsinShanghai.Thisstrategyfacili-tatesquantifyingtheeffectivenessofSLtiesinidentifyingpotentialhigh-riskgridscomparedwithtiesdefinedbyothercriteria:thosewiththehighestflow(ST),thegreatestdistance(LG),andtheshort-estdistance(shortties,SH).
Results
Statisticalandspatialfeaturesofties
Theoverviewofmobilitypatternsduringthreephases(seeFig.
1
AandTable
S1
),segmentedaccordingtotheinterventionstringency(seeMaterialsandmethodsfordetails),illustratestheprevalenceoflong-distanceconnectionswithheavyflow,i.e.SLs.ThistypeoftieisquantitativelyidentifiedasoutliersusingDBSCANwithabaselineofdistancelargerthan10km(d>10,000)andflowgreat-erthan28(f>28)(seeMaterialsandmethodsfordetails).Theflowofconnectionsreferstothenumberofindividualstravelingthroughduringthespecificphase.
TodifferentiatethecharacteristicsofSLsfromSTs,LGs,andSHs,wedefineafixednumberofties,k,asthatofSLsforeachgrid.Specifically,werespectivelyextracttiescharacterizedbythetop-kmaximumflow,maximumdistance,andminimumdis-tance.AsshowninFig.
1
B,duringtheprelockdownphase(2022March1–31),23.68and9.41%ofSTsarealsoSHsandSLs,respect-ively,whereasonly0.19%ofSLsareidentifiedasLGs.Statistically,STspredominantlyconcentrateongridpairswithaveragedis-
--
tanced=5,656.93andaverageflowf=810.65,withoutliersatlongdistances.SLsconcentrateonoutlierswitharelativelynar-rowflowdistribution.LGs,coveringdistancesfrom50to100km,typicallydemonstrateflowsunder200.Conversely,SHs,exclud-ingself-connections,focusonlocalconnectionswithina10km
-
radius,withanaverageflowf=404.92(seeFig.
S3
).SHsandSTssignificantlyoverlapbecauseshort-distancetiestendtogenerateheavyflow.STsandSLsshowminoroverlapsinceseverallong-distancetiesaccommodatelargerpopulationsthantheirshort-distancecounterparts.
Spatially,thesefourtypesoftiescanbedistinguishedthroughspatialautocorrelation,quantifiedbytheglobalMoran’sindexη,whichmeasuresthesimilarityofincomingconnectionsamong
Mouetal.|3
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Fig.1.Statisticalandspatialcharacteristicsofvarioustypesofties.Althoughdifferenttypesoftiesshareseveralconnections,theyshowvarious
statisticalandspatialcharacteristics.A)Theoverviewsofmobilitypatternsduringthreephasesareillustrated.B)Thejointdistributionofflow(f)anddistance(d)forvarioustypesoftiesduringtheprelockdownphasewithanexampleofgrid8,315isshown.Thenumberofalltypesoftiesforeachgrid
keepsinlinewiththatofSLs.φisthenumberofSLsduringthesecondphaseandκ-SLrepresentsthenumberofoverlappingtiesbetweenSTsandSLs.
C)ThespatialdistributionofSHs,LGs,STs,andSLsalongwithMoran’sindicesη.Linewidthrepresentsthestrengthoftheconnectionisexhibited.
neighboringgrids(see
SupplementaryNoteS1
).Theincomingconnectionsofgridsrefertothepossibilitybeingpassivelyiso-latedimposedbytheinfectedneighbors,andtheautocorrelationishighlyrelatedtotheoverlapofneighborsforallnodes.SLsshowthelowestspatialautocorrelation,withanaverageMoran’sindexη-sl=0.0974acrossthreephases.GridslinkedbySHsdisplayaspa-tiallyclustereddistribution,resultinginthehighestaverageauto-correlationη-sh=0.5615,followedbySTsandLGswithη-st=0.2536andη-lg=0.1935,respectively(seeTable
S2
).Allspatialautocorre-lationsarestatisticallysignificantwithP-value<0.001.GridsconnectedbySLsarerandomlydistributedwithoutsignificantclustering,whereasSHsconnectspatiallyproximategrids,showingsimilarincomingconnections.Peripheralgridscon-nectedbyLGsshowsignificantclustering,butgridsoutsidetheseclustersarescattered,therebyreducingspatialautocor-relation(seeFigs.
1
C,
S4,andS5
).
Epidemictemporalsimilarityamonggrids
Mostgridsshowatemporalcorrelationduringepidemicpropaga-tion,indicatingthatgridpairsmaybecomeinfectedwithinashorttime.Identifyingthesegridpairsandseveringtheirconnectioncanbeinstrumentalinreducingthehighlydynamiccorrelation,therebyslowingdiseasetransmission.ThelengthofSLsiscrucialinfacilitatingthespreadoftheepidemicbetweendistantgrid
pairs.Thestrengthoftheseconnectionsreflectsthetemporalconcordanceofarrivaltimesbetweensuchgridpairs,astheprob-abilityoftransmissionbetweengridsiscontingentuponthepopu-lationflow.Thisstudyinvestigatesthevariationinarrivaltimesbetweengridpairstoevaluatethetemporalsimilaritiesinepi-demicspread.Tofigureouttherelationshipbetweenhumanmo-bilityandtemporalsimilarity,i.e.whetherthetemporalsimilarityiscausedbypreviousorcurrenthumanmobility,weexaminethegapofarrivaltimesduringtheprelockdownandlockdown(2022April1–2022May30)phasesforgridpairsconnectedbytiesinthepreviousstages:thepreoutbreak(2022February15–28)andprelockdownphases,denotedasg1?2andg2?3,respectively.Thediscrepancieswithinthesamestagesarealsodiscussed,denoted
asg2?2andg3?3(seeFig.
2
A).Specifically,gx?yisthesetofg?yover-
allconnectionsundertheconsideredphases,i.e.gx?y={g?y},
whereg?y=|t?t|,(i,j)∈Exandtrepresentsthearrivaltime
ofgridiwhichisinfectedwithinthephasey,anddenotesthedif-ferenttypesoftiesduringphasex.
ThefindingssuggestthatSLseffectivelyidentifygridswithsubstantialflowacrossextensivespatialdistancesandpreservethetemporalconcordanceofgridpairs,akintoSTsandSHs(seeFig.
2
B).Specifically,SLscapture,onaverage,71.77and61.39%ofgridpairswithanarrivaltimegapof<7days,comparedwithSTswithinthecurrentandpreviousphases,respectively(seeTable
S3)
.Theincreasingnumberofgridpairswithg1?2≤7and
4|PNASNexus,2024,Vol.3,No.11
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Fig.2.Theeffectofdifferenttypesoftiesoncapturingtemporarilyhighlyrelatedgrids.SLeffectivelyidentifiesgridswithsubstantialflowacross
extensivespatialdistancesandpreservesthetemporalconcordanceofgridpairs.A)Thespatialdistributionofarrivaltimeduringtheprelockdownphaseforgridpairsconnectedbyvarioustypesoftiesinthesamephaseisexemplified.Thelinewidthofconnectionsonthetopmobilitynetworkrepresentsthepopulationflow,andthecolorofgridsonthebottommapdenotesthearrivaltime.B)Thestatisticaldistributionofthegapofarrivaltimebetweengridpairs,denotedasg,withinsetsdisplayingthecumulativehistogramsforeachtypeoftiesintheunitof7daysisindicated.Noticeably,thenonsignificantmobilityvariationbetweenthepreoutbreakandprelockdownphasesbringsinasimilardistributionbetweeng1-2andg2-2,andthecitywideepidemicpropagationduringtheprelockdownphasecausestheconcentrationofg2-3andg3-3.
g2-3≤7comparedwiththosewithg2-2≤7andg3-3≤7supportstheguidingeffectofpreviousmobilityonepidemictemporalsimilarity.Temporallysimilarandspatiallyremotegridsfromtheinitialoutbreaksitesignificantlyaccelerateepidemicpropa-gation,astheygetinfectedquicklyandtriggerfurtherepidemicexpansionwithlittleoverlapwiththeinitialone.Thisunder-scorestheimportanceofimplementingpreemptivequarantinemeasuresongridsconnectedtotheinitialoutbreakgridbySLstomitigateepidemicpropagation.
Epidemicpropagationcontainmentbasedongrid-jointisolationstrategy
TheabilityofSLstoidentifyremotegridpairswithhightemporalsimilarityhighlightsthepotentialeffectivenessofpreemptivelyisolatingneighboringgridsconnectedbytheseties,asdescribedbythegrid-jointisolatedstrategyinthiswork(seeFig.
3
AandMaterialsandmethods).Thisstrategysupportssimultaneouspre-emptiveisolationofneighbors(passiveisolation)ofgridsthatareconfirmedinfectiousanddirectlyisolated(activeisolation).The
Mouetal.|5
Downloadedfrom
/pnasnexus/article/3/11/pgae515/7900839bygueston29December2024
Fig.3.TheeffectofSLtiesonreducingcontagions.Grid-jointisolationbasedonSLsslowsdownepidemicpropagationforitspositiveeffectonisolatingremotesatelliteclusters.A)Thegeneralframeworkofgrid-jointisolationisdisplayed.Theinitialinfectiousgridswillbeactivelyisolatedifinfectionssurpassthethresholdα,andtheunconfirmedgrids(stars)pointedbyotheractivelyisolatedgirdswithtieset(dashedline)willbepassivelyisolatedwiththeeliminationofrelatedconnections.Squaresrepresentunconfirmedgrids,i.e.girdswithpatients<α.Theepidemicpropagationacrossspatial
networksisruledbytheRDT.B)TheschematicillustrationoftheRDTmodelwhereindividualschangetheirstatesaccordingtotheSEIRmechanismwithineachgridanddiffusebetweengridssubjecttothepopulationflowisshown.CirclesandsquaresrespectivelydenotethemovableandimmovableindividualswithS,E,I,andRstates,differentiatingwithdifferentcolors.C)TheperformanceofSLsinreducingthecumulativeinfections(Ic)alongwiththecorrespondingnumberofisolatedgrids(G),restrictededges(E),andquarantinedpopulation(P)isillustrated.Resultsareaveragedover50
independentrealizations.rG,rE,andrP,respectivelydenotestherelativeimprovementcomparedwithNUintermsofisolatedgrids,restrictededges,andquarantinedpopulation.D)Theepidemicarrivaltimeofeachgridaftergrid-jointisolationthroughvarioustypesofties,wherecirclesindicatesatelliteclustersisexhibited.Thenumberofuninfectedgridsforeachstrategy(Nun)isgiven.
infectiousgridsareconfirmedoncethenumberofpatientsexceedsacertainthresholdα.Specifically,thethresholdαrep-resentsthecriterionofisolatinggrids,thusdescribingthestrictnessofepidemiccontrolforeachgrid.TheRDTmodel(Fig.
3
BandseeMaterialsandmethods)simulatesepidemicpropagationacrossgridsduringgrid-jointisolationwiththegoodnessoffitequaling0.93,asvalidatedinFig.
S6
.Tominim-izetheimpactofinfectiondynamicsongridsnotlinkedtoSLs,wedevelopedanewmobilitynetworkcomprising4,358SL-relatedgridsandtheircorresponding6,172,854populationflows.Additionally,toevaluatetherelativeeffectivenessofdifferenttietypesinreducinginfections,westandardizedthenumberofcontrollableneighborsforeachgridtomatchtheSLscenario.Inthissection,wealsoconsidergrid-jointisolationaccordingtotheinfectionpressure(PR)ofgridswhichdescribestheprob-abilityofthegridbeinginfected(see
SupplementaryNoteS2
fordetails).ThestrategyofpassivelyisolatinggridslinkedbySLsresultsinarelativereductionincumulativeinfectionsbyaverage17.1%,i.e.(Rd〉=0.171,comparedwithothertypesofties,andanevengreaterreduction,Rd=0.196,comparedwithanullmodel(NU)thatonlyisolatesconfirmedgrids(seeTable
S4
andFig.
3
C).Notably,althoughtheSL-basedisolationstrategybringsinmoreisolatedgridsandrestrictedroutinescomparedwithothertypesofties,ityieldslessquarantinedin-dividualsthanSH,ST,andPR.
Simulationsinvolvinggrid-jointisolationthroughalltypesofties,exceptSLs,revealtheemergenceofseveralsignificantre-motesatelliteclustersthatareinfectedearly(seeFig.
3
D).Theseclustersactasnewsourcesofoutbreak,acceleratingthespreadoftheepidemic.Inaddition,SL-basedgrid-jointisolationyieldsasimilarnumberofuninfectedgridscomparedwithothertypesofties,exceptforLGs.SincegridsrelatedtoLGareusuallythecityperipheriesthataretypicallyinfectedlately,theyareoftenpassivelyisolatedatthetimeearlierthanthepossibleinfectedtimes,thusincreasingtheisolationofuninfectedgrids.Itisnote-worthythatsimulationunderSTsyieldsfewergridswithinashortarrivaltimethanSLs.Specifically,theST-focusedisolationstrat-egyleadsto853gridswithanarrivaltimeof<14days,whichisfewerthanthatachievedthroughSL-orientedisolation,andsig-nificantlylessthanthe1,324gridsobservedintheNUscenario(seeFig.
S7
).ToexplainthediscrepancybetweenthecumulativeinfectionsandthearrivaltimeassociatedwithSLs,weexaminethedynamicsofdailyconfirmedinfectionsunderdifferentcontrolmeasures(seeFig.
S8
).InthecontextofSTs,severalgridswithar-rivaltimesmallerthan14daysareidentifiedassatelliteseedsandinitiatenewoutbreaks,raisingthenumberofgridswithanarrivaltimeof25–34days.ThereactionprocessoftheRDTmodelwithinthesegridsinducesincreasinginfectionsafterseveraldays.Consequently,satelliteclustersbecomeprimarydriversofsec-ondarypropagation,leadingtoheavydailyconfirmedinfections.
6|PNASNexus,2024,Vol.3,No.11
Fromtheperspectiveofcommunitystructureinmobilitynet-works,SLscapturemoreinter-communitylinksthanSTsandSHs,therebyisolatingmoregridswithdiversetopologicalfeaturesunderthejoint-gridisolationstrategy.AlthoughLGsconnectgridsacrossdifferentcommunities,mostpassivelyisolatedgridsarelocatedatcityperipherieswithoutanypatients,thusdimin-ishingtheeffectivenessofpassiveisolation(see
Supplementary
NoteS3
andFig.
S1
).
EffectiveinterventionofSLties
Thedeepanalysisofwhathappenedduringthegrid-jointisola-tionprocessfacilitatesacomprehensiveunderstandingoftheper-formanceofvarioustypesofties.Sinceactivelyisolatedgridsmaysimultaneouslyoptforpassiveisolationoftheirsharedneighbor-inggrids,thegrid-jointisolationstrategyfavorsgridpairswithfewcommonneighbors.ThesmallspatialautocorrelationofSLex-plainsthesignificantsuperiorityofcapturingmorepassiveisola-tion.Consideringthepassiveisolationofgridswithpatientslargerthanαsincetheyarepointedbyotheractivelyisolatedgrids,i.e.activeandpassiveisolatedgrids,SLandPRfacilitatetheidentifi-cationofhighlyhazardousgrids(seeFig.
4
A).
SLstendtopassivelyisolatesparselydistributedgridsduetotheirlowspatialautocorrelation,whereasothertypesoftiesmightisolatetheidenticalgridthroughdifferentlinksduetotheirhighMoran’sindex.Theoverlapreducesthenumberofpassivelyisolatedgrids,therebydiminishingtheefficiencyofquarantinemeasuresundertheassumptionthatvariousisolatedgridscanconcurrentlyandindependentlyselecttheircom
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《來(lái)之不易的糧食》教學(xué)設(shè)計(jì)
- 中國(guó)歷史上的十大科學(xué)家為人類進(jìn)步作出重要貢獻(xiàn)的學(xué)者
- 2024年溫州科技職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- 中考數(shù)學(xué)總復(fù)習(xí)策略知識(shí)講稿
- 農(nóng)業(yè)標(biāo)準(zhǔn)化與農(nóng)業(yè)現(xiàn)代化講解材料
- 2024年浙江舟山群島新區(qū)旅游與健康職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- 第一講何謂藝術(shù)史教材課程
- 感染性休克搶救的程序課件
- 四年級(jí)語(yǔ)文上冊(cè)第五單元第17課爬山都峰習(xí)題課件新人教版
- 2024年泊頭職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 產(chǎn)品召回管理制度內(nèi)容
- 2024商業(yè)招商運(yùn)營(yíng)培訓(xùn)
- 品牌授權(quán)使用合同范例
- 2025年春節(jié)工廠放假通知范文
- 道路隱患排查整治
- 2024-2025學(xué)年滬科版九年級(jí)數(shù)學(xué)上冊(cè)期末模擬考試卷(安徽專用九上全冊(cè)+九下24.1~24.3圓周角)
- 非急救轉(zhuǎn)運(yùn)合同范例
- 車輛使用安全培訓(xùn)
- 肺結(jié)核的護(hù)理個(gè)案
- 陜西省漢中市2024-2025學(xué)年高一上學(xué)期12月第二次月考地理試題(含答案)
- 節(jié)前教育動(dòng)員部署及安全檢查
評(píng)論
0/150
提交評(píng)論