河南天一大聯考2025屆高考仿真模擬數學試卷含解析_第1頁
河南天一大聯考2025屆高考仿真模擬數學試卷含解析_第2頁
河南天一大聯考2025屆高考仿真模擬數學試卷含解析_第3頁
河南天一大聯考2025屆高考仿真模擬數學試卷含解析_第4頁
河南天一大聯考2025屆高考仿真模擬數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南天一大聯考2025屆高考仿真模擬數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則=A. B. C. D.2.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件3.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.4.如圖,在棱長為4的正方體中,E,F,G分別為棱AB,BC,的中點,M為棱AD的中點,設P,Q為底面ABCD內的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.5.在滿足,的實數對中,使得成立的正整數的最大值為()A.5 B.6 C.7 D.96.函數的對稱軸不可能為()A. B. C. D.7.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.8.設,為非零向量,則“存在正數,使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件9.若函數滿足,且,則的最小值是()A. B. C. D.10.已知函數,若,使得,則實數的取值范圍是()A. B.C. D.11.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]12.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列是各項均為正數的等比數列,若,則的最小值為________.14.已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準線上一動點,滿足,,當面積最大時,直線的方程為______.15.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務,每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當甲、乙兩人都參加時,他們參加社區(qū)服務的日期不相鄰,那么不同的安排種數為______________.(用數字作答)16.設,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.18.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.19.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數;(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68220.(12分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.21.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.22.(10分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養(yǎng).采取數軸法,利用數形結合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.2、D【解析】

根據正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,考查理解辨析能力與運算求解能力,屬于基礎題.3、B【解析】

根據函數單調性逐項判斷即可【詳解】對A,由正弦函數的單調性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數,且a>b,所以ca>cb,正確對C,因為y=xc為增函數,故,錯誤;對D,因為在為減函數,故,錯誤故選B.【點睛】本題考查了不等式的基本性質以及指數函數的單調性,屬基礎題.4、C【解析】

把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內的部分)上,顯然關于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質求得最小值.5、A【解析】

由題可知:,且可得,構造函數求導,通過導函數求出的單調性,結合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調遞增,在上單調遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導數求函數單調性、極值和最值,以及運用構造函數法和放縮法,同時考查轉化思想和解題能力.6、D【解析】

由條件利用余弦函數的圖象的對稱性,得出結論.【詳解】對于函數,令,解得,當時,函數的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數的圖象的對稱性,屬于基礎題.7、D【解析】

求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.8、D【解析】

充分性中,由向量數乘的幾何意義得,再由數量積運算即可說明成立;必要性中,由數量積運算可得,不一定有正數,使得,所以不成立,即可得答案.【詳解】充分性:若存在正數,使得,則,,得證;必要性:若,則,不一定有正數,使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數量積的運算,向量數乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.9、A【解析】

由推導出,且,將所求代數式變形為,利用基本不等式求得的取值范圍,再利用函數的單調性可得出其最小值.【詳解】函數滿足,,即,,,,即,,則,由基本不等式得,當且僅當時,等號成立.,由于函數在區(qū)間上為增函數,所以,當時,取得最小值.故選:A.【點睛】本題考查代數式最值的計算,涉及對數運算性質、基本不等式以及函數單調性的應用,考查計算能力,屬于中等題.10、C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數的最小值為,當時,為單調遞增函數,所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數的綜合問題.【方法點晴】本題主要考查了函數的綜合問題,其中解答中涉及到基本不等式求最值、函數的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.11、D【解析】

由題意作出可行域,轉化目標函數為連接點和可行域內的點的直線斜率的倒數,數形結合即可得解.【詳解】由題意作出可行域,如圖,目標函數可表示連接點和可行域內的點的直線斜率的倒數,由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應用,屬于基礎題.12、D【解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】

設等比數列的公比為,根據,可得,因為,根據均值不等式,即可求得答案.【詳解】設等比數列的公比為,,,等比數列的各項為正數,,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數列值的最值問題,解題關鍵是掌握等比數列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.14、【解析】

根據均值不等式得到,,根據等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當且僅當,等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應用,意在考查學生的計算能力和綜合應用能力.15、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數為。填5040.【點睛】利用排列組合計數時,關鍵是正確進行分類和分步,分類時要注意不重不漏.在本題中,甲與乙是兩個特殊元素,對于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。16、121【解析】

在所給的等式中令,,令,可得2個等式,再根據所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解析】

(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內,所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,則,,,,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,,所以.又因為,所以,,設平面的法向量為,則,即,,可得,即因為在平面內,所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.18、另一個特征值為,對應的一個特征向量【解析】

根據特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應的一個特征向量.【詳解】矩陣的特征多項式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設對應的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應的一個特征向量【點睛】本題考查了矩陣的特征值以及特征向量,需掌握特征多項式的計算形式,屬于基礎題.19、(1)(i)83.;(ii)272.(2)見解析.【解析】

(1)根據原始分數分布區(qū)間及轉換分區(qū)間,結合所給示例,即可求得小明轉換后的物理成績;根據正態(tài)分布滿足N60,122(2)根據各等級人數所占比例可知在區(qū)間61,80內的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物理成績?yōu)?3分;(ii)因為物理考試原始分基本服從正態(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區(qū)間61,80內的概率為25隨機抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數學期望EX【點睛】本題考查了統(tǒng)計的綜合應用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數學期望的求法,文字多,數據多,需要細心的分析和理解,屬于中檔題。20、(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設:,將其與曲線的方程聯立,消元并整理得,設,,則可得,,由求出,將直線方程與聯立,得,求得,計算,設.顯然,構造,由導數的知識求得其最小值,同時可得直線的方程.【詳解】(1)設,則,即整理得(2)設:,將其與曲線的方程聯立,得即設,,則,將直線:與聯立,得∴∴設.顯然構造在上恒成立所以在上單調遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數的性質求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據步驟相應給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論