江西省名師聯(lián)盟2025屆高考數(shù)學全真模擬密押卷含解析_第1頁
江西省名師聯(lián)盟2025屆高考數(shù)學全真模擬密押卷含解析_第2頁
江西省名師聯(lián)盟2025屆高考數(shù)學全真模擬密押卷含解析_第3頁
江西省名師聯(lián)盟2025屆高考數(shù)學全真模擬密押卷含解析_第4頁
江西省名師聯(lián)盟2025屆高考數(shù)學全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江西省名師聯(lián)盟2025屆高考數(shù)學全真模擬密押卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.192.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.23.若集合,,則下列結(jié)論正確的是()A. B. C. D.4.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.5.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.6.對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.7.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.8.已知是雙曲線的左、右焦點,若點關(guān)于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()A. B. C. D.9.若時,,則的取值范圍為()A. B. C. D.10.已知復數(shù),,則()A. B. C. D.11.若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為()A.85 B.84 C.57 D.5612.是定義在上的增函數(shù),且滿足:的導函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則的最小值為________.14.若,,則___________.15.設,分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________16.若存在實數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數(shù)”,下列各組函數(shù)中是對應區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.19.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.20.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.21.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.22.(10分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.2、C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎題.3、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學生概念理解,數(shù)學運算能力,屬于基礎題.4、C【解析】

幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.5、A【解析】

分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎題.6、D【解析】

作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側(cè),與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好.7、B【解析】

根據(jù)拋物線方程求得焦點坐標和準線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應用,圓的幾何性質(zhì)應用,屬于中檔題.8、B【解析】

先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關(guān)于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.9、D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.10、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的常考問題,屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.11、A【解析】

先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎題.12、D【解析】

根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導數(shù)在函數(shù)單調(diào)性中的應用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設中給出的原函數(shù)與導數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】

設等比數(shù)列的公比為,根據(jù),可得,因為,根據(jù)均值不等式,即可求得答案.【詳解】設等比數(shù)列的公比為,,,等比數(shù)列的各項為正數(shù),,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數(shù)列值的最值問題,解題關(guān)鍵是掌握等比數(shù)列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.14、【解析】

因為,所以,又,所以,則,所以.15、1【解析】

令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數(shù)奇偶性的應用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.16、①②④【解析】

由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點,若兩函數(shù)在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調(diào)遞增,,即.令,則,單調(diào)遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設平面的一個法向量為,結(jié)合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設平面的一個法向量為,由,取,得.設直線與平面所成角為,則.直線與平面所成角的正弦值為.【點睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記18、(Ⅰ)6(Ⅱ)【解析】

(Ⅰ)化簡得到直線的普通方程化為,,是以點為圓心,為半徑的圓,利用垂徑定理計算得到答案.(Ⅱ)設,則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標方程變形為,所以的普通方程分別為,是以點為圓心,為半徑的圓,設點到直線的距離為,則,所以.(Ⅱ)的標準方程為,所以參數(shù)方程為(為參數(shù)),設,,因為,所以,所以.【點睛】本題考查了參數(shù)方程,極坐標方程,意在考查學生的計算能力和應用能力.19、(1)l:,C方程為;(2)=【解析】

(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.

(2)利用一元二次方程根和系數(shù)關(guān)系式的應用求出結(jié)果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進一步轉(zhuǎn)換為.直線l的極坐標方程為ρcos(θ+)=1,則轉(zhuǎn)換為直角坐標方程為.(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應的參數(shù)),所以,,所以=.【點睛】本題考查參數(shù)方程極坐標方程和直角坐標方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應用,主要考查學生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎題型.20、(1)證明見解析;(2)證明見解析;(3).【解析】

(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點,從而得出是的中點,可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因為,兩點不在棱的端點處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長交的延長線于點,若四邊形為菱形,則,易證,所以,即為的中點,因此,且,所以是的中位線,則是的中點,所以.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和線段長的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.21、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論