版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆陜西省渭南市三賢中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.國(guó)務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見》中提出,要優(yōu)先落實(shí)教育投入.某研究機(jī)構(gòu)統(tǒng)計(jì)了年至年國(guó)家財(cái)政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯(cuò)誤的是()A.隨著文化教育重視程度的不斷提高,國(guó)在財(cái)政性教育經(jīng)費(fèi)的支出持續(xù)增長(zhǎng)B.年以來(lái),國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國(guó)的總值最少增加萬(wàn)億D.從年到年,國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出增長(zhǎng)最多的年份是年2.已知、分別是雙曲線的左、右焦點(diǎn),過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點(diǎn)、,過點(diǎn)作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.3.已知橢圓的左、右焦點(diǎn)分別為、,過點(diǎn)的直線與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.4.已知復(fù)數(shù)z滿足,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.26.“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612427.函數(shù)(),當(dāng)時(shí),的值域?yàn)?,則的范圍為()A. B. C. D.8.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺9.二項(xiàng)式展開式中,項(xiàng)的系數(shù)為()A. B. C. D.10.設(shè)全集集合,則()A. B. C. D.11.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.12.的展開式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.80二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓:的一個(gè)焦點(diǎn)坐標(biāo)為,則的長(zhǎng)軸長(zhǎng)為_______.14.如圖所示的流程圖中,輸出的值為______.15.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則16.設(shè)向量,,且,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.18.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.19.(12分)已知拋物線,直線與交于,兩點(diǎn),且.(1)求的值;(2)如圖,過原點(diǎn)的直線與拋物線交于點(diǎn),與直線交于點(diǎn),過點(diǎn)作軸的垂線交拋物線于點(diǎn),證明:直線過定點(diǎn).20.(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國(guó)”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺(tái)計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)不喜歡閱讀中國(guó)古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國(guó)古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國(guó)古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會(huì),記為參加會(huì)議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.21.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,.(1)若,證明:.(2)若,,求的面積.22.(10分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
觀察圖表,判斷四個(gè)選項(xiàng)是否正確.【詳解】由表易知、、項(xiàng)均正確,年中國(guó)為萬(wàn)億元,年中國(guó)為萬(wàn)億元,則從年至年,中國(guó)的總值大約增加萬(wàn)億,故C項(xiàng)錯(cuò)誤.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表,正確認(rèn)識(shí)圖表是解題基礎(chǔ).2、B【解析】
設(shè)點(diǎn)位于第二象限,可求得點(diǎn)的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進(jìn)而可求得雙曲線的離心率.【詳解】設(shè)點(diǎn)位于第二象限,由于軸,則點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為,即點(diǎn),由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計(jì)算能力,屬于中等題.3、D【解析】
可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長(zhǎng)相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點(diǎn)睛】本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.4、A【解析】
設(shè),由得:,由復(fù)數(shù)相等可得的值,進(jìn)而求出,即可得解.【詳解】設(shè),由得:,即,由復(fù)數(shù)相等可得:,解之得:,則,所以,在復(fù)平面對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,在第一象限.故選:A.【點(diǎn)睛】本題考查共軛復(fù)數(shù)的求法,考查對(duì)復(fù)數(shù)相等的理解,考查復(fù)數(shù)在復(fù)平面對(duì)應(yīng)的點(diǎn),考查運(yùn)算能力,屬于??碱}.5、B【解析】
先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)?,所以,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.6、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。7、B【解析】
首先由,可得的范圍,結(jié)合函數(shù)的值域和正弦函數(shù)的圖像,可求的關(guān)于實(shí)數(shù)的不等式,解不等式即可求得范圍.【詳解】因?yàn)?,所以,若值域?yàn)?,所以只需,?故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).8、A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.9、D【解析】
寫出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.10、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點(diǎn)睛】本題考查集合的基本運(yùn)算,涉及到補(bǔ)集、交集運(yùn)算,是一道容易題.11、C【解析】
把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.12、B【解析】
展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由焦點(diǎn)坐標(biāo)得從而可求出,繼而得到橢圓的方程,即可求出長(zhǎng)軸長(zhǎng).【詳解】解:因?yàn)橐粋€(gè)焦點(diǎn)坐標(biāo)為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的幾何意義.本題的易錯(cuò)點(diǎn)是忽略,從而未對(duì)的兩個(gè)值進(jìn)行取舍.14、4【解析】
根據(jù)流程圖依次運(yùn)行直到,結(jié)束循環(huán),輸出n,得出結(jié)果.【詳解】由題:,,,結(jié)束循環(huán),輸出.故答案為:4【點(diǎn)睛】此題考查根據(jù)程序框圖運(yùn)行結(jié)果求輸出值,關(guān)鍵在于準(zhǔn)確識(shí)別循環(huán)結(jié)構(gòu)和判斷框語(yǔ)句.15、3【解析】
先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標(biāo)函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時(shí)即為所求.2y+1=0x-y-1=0點(diǎn)A(12,z在點(diǎn)A處有最小值:z=2×1故答案為:32【點(diǎn)睛】本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合,結(jié)合目標(biāo)函數(shù)的幾何意義是解決此類問題的基本方法.16、【解析】
根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點(diǎn)D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計(jì)算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關(guān)系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點(diǎn)D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點(diǎn)睛】本題考查了線線垂直,線面夾角,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1)極大值為;極小值為;(2)見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?,所以當(dāng)時(shí),;當(dāng)時(shí),,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因?yàn)?且在上單調(diào)遞減,所以,故.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.19、(1);(2)見解析【解析】
(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長(zhǎng)公式計(jì)算即可.(2)由(1)可得,設(shè),計(jì)算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計(jì)算直線的斜率,求出直線的方程,化簡(jiǎn)可得到恒過的定點(diǎn).【詳解】(1)由,消去可得,設(shè),,則,.,解得或(舍去),.(2)證明:由(1)可得,設(shè),所以直線的方程為,當(dāng)時(shí),,則,代入拋物線方程,可得,,所以直線的斜率,直線的方程為,整理可得,故直線過定點(diǎn).【點(diǎn)睛】本題第一問考查直線與拋物線相交的弦長(zhǎng)問題,需熟記弦長(zhǎng)公式.第二問考查直線方程和直線恒過定點(diǎn)問題,需有較強(qiáng)的計(jì)算能力,屬于難題.20、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)423072不喜歡閱讀中國(guó)古典文學(xué)301848總計(jì)7248120所以,沒有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會(huì)的男生中喜歡中國(guó)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安明德理工學(xué)院《組成原理與系統(tǒng)結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024無(wú)錫江陰金融服務(wù)合同
- 2024版簡(jiǎn)單的土石方承包合同范本
- 臨時(shí)安保服務(wù)定制協(xié)議:2024年標(biāo)準(zhǔn)版B版
- 二零二五年跨境電商平臺(tái)合作銷售合同3篇
- 個(gè)性化制作服務(wù)費(fèi)及銷售權(quán)合同(2024版)版
- 二零二五年度高端房地產(chǎn)信托借款服務(wù)合同3篇
- 2025年度企業(yè)社會(huì)責(zé)任報(bào)告編輯服務(wù)合同范本3篇
- 天津城市職業(yè)學(xué)院《鑄造工藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《生物工程單元操作原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 專題6.8 一次函數(shù)章末測(cè)試卷(拔尖卷)(學(xué)生版)八年級(jí)數(shù)學(xué)上冊(cè)舉一反三系列(蘇科版)
- GB/T 4167-2024砝碼
- 老年人視覺障礙護(hù)理
- 《腦梗塞的健康教育》課件
- 《請(qǐng)柬及邀請(qǐng)函》課件
- 遼寧省普通高中2024-2025學(xué)年高一上學(xué)期12月聯(lián)合考試語(yǔ)文試題(含答案)
- 《個(gè)體防護(hù)裝備安全管理規(guī)范AQ 6111-2023》知識(shí)培訓(xùn)
- 青海原子城的課程設(shè)計(jì)
- 2023年年北京市各區(qū)初三語(yǔ)文一模分類試題匯編 - 作文
- 常州大學(xué)《新媒體文案創(chuàng)作與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 麻醉蘇醒期躁動(dòng)患者護(hù)理
評(píng)論
0/150
提交評(píng)論