武漢音樂(lè)學(xué)院《人工智能技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
武漢音樂(lè)學(xué)院《人工智能技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
武漢音樂(lè)學(xué)院《人工智能技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
武漢音樂(lè)學(xué)院《人工智能技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
武漢音樂(lè)學(xué)院《人工智能技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)武漢音樂(lè)學(xué)院《人工智能技術(shù)與應(yīng)用》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在金融風(fēng)險(xiǎn)管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測(cè)市場(chǎng)風(fēng)險(xiǎn),以下關(guān)于模型評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最重要的?()A.準(zhǔn)確率,即模型正確預(yù)測(cè)的比例B.召回率,即模型正確識(shí)別出風(fēng)險(xiǎn)的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量模型預(yù)測(cè)值與實(shí)際值之間的差異2、人工智能中的強(qiáng)化學(xué)習(xí)算法在機(jī)器人足球比賽中可以訓(xùn)練機(jī)器人球員的策略。假設(shè)要讓機(jī)器人球隊(duì)在比賽中取得更好的成績(jī),以下哪個(gè)方面是強(qiáng)化學(xué)習(xí)算法需要重點(diǎn)優(yōu)化的?()A.球員的動(dòng)作控制B.團(tuán)隊(duì)的協(xié)作策略C.球場(chǎng)環(huán)境的建模D.對(duì)手行為的預(yù)測(cè)3、在人工智能的機(jī)器人控制領(lǐng)域,假設(shè)要讓一個(gè)機(jī)器人通過(guò)學(xué)習(xí)來(lái)適應(yīng)不同的環(huán)境和任務(wù),以下關(guān)于機(jī)器人學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以通過(guò)預(yù)先編程來(lái)應(yīng)對(duì)所有可能的情況,無(wú)需學(xué)習(xí)能力B.強(qiáng)化學(xué)習(xí)是機(jī)器人學(xué)習(xí)的唯一有效方法,其他學(xué)習(xí)方法不適用C.機(jī)器人在學(xué)習(xí)過(guò)程中可以通過(guò)與環(huán)境的交互和試錯(cuò)來(lái)不斷改進(jìn)自己的行為D.機(jī)器人的學(xué)習(xí)能力受到硬件限制,無(wú)法達(dá)到與人類相似的學(xué)習(xí)效果4、人工智能中的弱人工智能和強(qiáng)人工智能是兩個(gè)不同的概念。假設(shè)我們?cè)谟懻撊斯ぶ悄艿陌l(fā)展階段,以下關(guān)于弱人工智能和強(qiáng)人工智能的描述,哪一項(xiàng)是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強(qiáng)人工智能目前已經(jīng)廣泛應(yīng)用于各個(gè)領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強(qiáng)人工智能的關(guān)鍵在于計(jì)算能力5、假設(shè)在一個(gè)智能教育系統(tǒng)中,需要利用人工智能為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑和資源推薦。為了準(zhǔn)確評(píng)估學(xué)生的學(xué)習(xí)狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學(xué)習(xí)行為數(shù)據(jù)和聚類分析B.知識(shí)掌握程度數(shù)據(jù)和回歸分析C.學(xué)習(xí)偏好數(shù)據(jù)和分類算法D.以上都是6、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無(wú)關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)7、在人工智能的倫理和社會(huì)影響方面,存在許多需要思考的問(wèn)題。假設(shè)一個(gè)基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡(jiǎn)歷和面試表現(xiàn)進(jìn)行篩選。以下關(guān)于這種系統(tǒng)可能帶來(lái)的潛在問(wèn)題,哪一項(xiàng)是最值得關(guān)注的?()A.系統(tǒng)可能會(huì)因?yàn)閿?shù)據(jù)偏差而對(duì)某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過(guò)程過(guò)于透明,導(dǎo)致企業(yè)招聘策略被競(jìng)爭(zhēng)對(duì)手輕易了解C.系統(tǒng)可能會(huì)過(guò)于依賴簡(jiǎn)歷信息,而忽略了候選人的實(shí)際能力和潛力D.系統(tǒng)的運(yùn)行成本過(guò)高,對(duì)企業(yè)造成經(jīng)濟(jì)負(fù)擔(dān)8、在人工智能的機(jī)器人控制領(lǐng)域,強(qiáng)化學(xué)習(xí)可以讓機(jī)器人通過(guò)與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個(gè)機(jī)器人需要學(xué)會(huì)在不同地形上行走,以下哪個(gè)因素對(duì)于強(qiáng)化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機(jī)器人的初始狀態(tài)C.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)D.機(jī)器人的硬件性能9、人工智能中的遷移學(xué)習(xí)方法可以提高模型的泛化能力。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于特定領(lǐng)域的圖像識(shí)別任務(wù),以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.可以將預(yù)訓(xùn)練模型的參數(shù)作為初始值,在新數(shù)據(jù)上進(jìn)行微調(diào)B.能夠利用已有的知識(shí)和特征,減少在新任務(wù)上的數(shù)據(jù)標(biāo)注和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)在任何情況下都能顯著提高新任務(wù)的模型性能D.需要根據(jù)新任務(wù)的特點(diǎn)選擇合適的預(yù)訓(xùn)練模型和遷移策略10、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個(gè)用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對(duì)數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法11、知識(shí)圖譜是一種用于表示知識(shí)和關(guān)系的結(jié)構(gòu)化數(shù)據(jù)模型。以下關(guān)于知識(shí)圖譜的說(shuō)法,不正確的是()A.知識(shí)圖譜可以整合來(lái)自不同來(lái)源的知識(shí),構(gòu)建一個(gè)全面的知識(shí)體系B.知識(shí)圖譜中的節(jié)點(diǎn)表示實(shí)體,邊表示實(shí)體之間的關(guān)系C.知識(shí)圖譜在智能搜索、推薦系統(tǒng)和問(wèn)答系統(tǒng)等領(lǐng)域有著重要的應(yīng)用D.構(gòu)建知識(shí)圖譜非常簡(jiǎn)單,不需要大量的人力和時(shí)間投入12、在人工智能的情感分析任務(wù)中,比如分析社交媒體上用戶對(duì)某一產(chǎn)品的態(tài)度是積極還是消極,以下哪種特征提取方法可能會(huì)產(chǎn)生重要影響?()A.基于詞袋模型B.基于詞嵌入C.基于語(yǔ)法結(jié)構(gòu)D.基于語(yǔ)義網(wǎng)絡(luò)13、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)環(huán)境的獎(jiǎng)勵(lì)信號(hào)存在延遲和不確定性。以下哪種方法能夠幫助智能體更好地應(yīng)對(duì)這種情況?()A.使用深度強(qiáng)化學(xué)習(xí)算法,具有更強(qiáng)的表示能力B.引入先驗(yàn)知識(shí)和啟發(fā)式策略C.增加訓(xùn)練的迭代次數(shù)D.以上都是14、在人工智能的情感計(jì)算中,需要從人的面部表情、語(yǔ)音語(yǔ)調(diào)、文字等多模態(tài)信息中識(shí)別情感。假設(shè)要綜合分析這些多模態(tài)信息來(lái)準(zhǔn)確判斷一個(gè)人的情感狀態(tài),以下哪種融合方式是有效的?()A.早期融合,在數(shù)據(jù)層面進(jìn)行整合B.晚期融合,在決策層面進(jìn)行整合C.不進(jìn)行融合,分別處理每個(gè)模態(tài)的信息D.隨機(jī)選擇一種模態(tài)的信息進(jìn)行分析15、人工智能中的異常檢測(cè)技術(shù)可以在數(shù)據(jù)中發(fā)現(xiàn)不符合正常模式的樣本。假設(shè)要在網(wǎng)絡(luò)流量數(shù)據(jù)中檢測(cè)異常行為,以下哪個(gè)因素對(duì)于檢測(cè)算法的選擇影響最大?()A.數(shù)據(jù)的維度B.異常行為的類型C.數(shù)據(jù)的分布特征D.計(jì)算資源的可用性16、人工智能中的異常檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一個(gè)工業(yè)生產(chǎn)過(guò)程中檢測(cè)出異常的數(shù)據(jù)點(diǎn),以下關(guān)于異常檢測(cè)方法的描述,正確的是:()A.基于統(tǒng)計(jì)的異常檢測(cè)方法適用于所有類型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測(cè)模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測(cè)方法能夠自動(dòng)發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無(wú)需人工特征工程D.以上方法在不同的應(yīng)用場(chǎng)景中都有各自的優(yōu)缺點(diǎn),需要根據(jù)實(shí)際情況選擇17、在開(kāi)發(fā)一個(gè)能夠與人類進(jìn)行自然流暢對(duì)話的人工智能聊天機(jī)器人時(shí),不僅要理解用戶的輸入,還要生成合理且富有邏輯的回復(fù)。為了實(shí)現(xiàn)這一目標(biāo),以下哪個(gè)方面的技術(shù)是至關(guān)重要的?()A.語(yǔ)言模型的訓(xùn)練B.對(duì)話管理策略C.情感分析能力D.知識(shí)圖譜的構(gòu)建18、在計(jì)算機(jī)視覺(jué)中,以下哪種任務(wù)需要對(duì)圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像分類B.目標(biāo)檢測(cè)C.圖像分割D.圖像生成19、在一個(gè)利用人工智能進(jìn)行智能客服的系統(tǒng)中,為了提高回答的準(zhǔn)確性和全面性,以下哪個(gè)方面的優(yōu)化可能是關(guān)鍵的?()A.知識(shí)庫(kù)的構(gòu)建和更新B.自然語(yǔ)言處理模型的改進(jìn)C.對(duì)話流程的設(shè)計(jì)D.以上都是20、在人工智能的發(fā)展過(guò)程中,算力的提升起到了重要的推動(dòng)作用。假設(shè)一個(gè)研究團(tuán)隊(duì)需要進(jìn)行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對(duì)人工智能的影響的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的算力能夠加速模型的訓(xùn)練過(guò)程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進(jìn)D.算力的成本和可獲取性會(huì)影響人工智能技術(shù)的應(yīng)用和推廣21、在人工智能的發(fā)展過(guò)程中,倫理原則的制定至關(guān)重要。假設(shè)要制定人工智能倫理原則,以下關(guān)于其制定的描述,哪一項(xiàng)是不正確的?()A.應(yīng)考慮公平、公正、透明、可解釋等原則,保障公眾利益B.倫理原則應(yīng)隨著技術(shù)的發(fā)展和應(yīng)用不斷更新和完善C.制定倫理原則只需考慮技術(shù)層面的問(wèn)題,無(wú)需考慮社會(huì)和文化因素D.廣泛征求各界意見(jiàn),確保倫理原則的合理性和可行性22、在人工智能的機(jī)器翻譯任務(wù)中,為了提高翻譯的質(zhì)量和準(zhǔn)確性,尤其是對(duì)于具有特定領(lǐng)域知識(shí)的文本,以下哪種策略可能是有效的?()A.使用大規(guī)模通用語(yǔ)料庫(kù)B.引入領(lǐng)域特定的詞典和知識(shí)C.優(yōu)化神經(jīng)網(wǎng)絡(luò)架構(gòu)D.以上都是23、人工智能在教育領(lǐng)域的應(yīng)用逐漸興起。假設(shè)要開(kāi)發(fā)一個(gè)智能輔導(dǎo)系統(tǒng),以下關(guān)于這種系統(tǒng)的描述,正確的是:()A.智能輔導(dǎo)系統(tǒng)能夠根據(jù)每個(gè)學(xué)生的學(xué)習(xí)進(jìn)度和特點(diǎn),提供個(gè)性化的學(xué)習(xí)方案B.智能輔導(dǎo)系統(tǒng)可以完全取代教師的作用,學(xué)生無(wú)需與教師進(jìn)行交流C.智能輔導(dǎo)系統(tǒng)的效果只取決于系統(tǒng)的功能,與學(xué)生的學(xué)習(xí)態(tài)度和習(xí)慣無(wú)關(guān)D.智能輔導(dǎo)系統(tǒng)不需要考慮教育倫理和學(xué)生隱私保護(hù)問(wèn)題24、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂(lè)生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂(lè)作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨(dú)特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論25、在人工智能的自然語(yǔ)言生成任務(wù)中,假設(shè)要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓(xùn)練的策略,哪一項(xiàng)是不正確的?()A.使用預(yù)訓(xùn)練的語(yǔ)言模型,并在特定任務(wù)上進(jìn)行微調(diào)B.從簡(jiǎn)單的句子生成開(kāi)始,逐漸過(guò)渡到復(fù)雜的文章生成C.不使用任何先驗(yàn)知識(shí)或語(yǔ)言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動(dòng)的學(xué)習(xí)D.引入對(duì)抗訓(xùn)練,提高生成文本的質(zhì)量和多樣性二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明人工智能中的模型評(píng)估指標(biāo)。2、(本題5分)簡(jiǎn)述人工智能系統(tǒng)的安全性考量。3、(本題5分)解釋人工智能的主要研究領(lǐng)域。4、(本題5分)解釋人工智能的主要研究領(lǐng)域。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一個(gè)使用人工智能的智能戲曲作品傳播效果監(jiān)測(cè)系統(tǒng),分析其如何監(jiān)測(cè)戲曲作品的傳播效果。2、(本題5分)以某智能體育訓(xùn)練系統(tǒng)為例,探討人工智能在運(yùn)動(dòng)員訓(xùn)練計(jì)劃制定中的應(yīng)用。3、(本題5分)研究一個(gè)利用人工智能進(jìn)行攝影作品后期處理的案例,分析其處理效果和風(fēng)格特點(diǎn)。4、(本題5分)考察某視頻平臺(tái)通過(guò)人工智能進(jìn)行視頻推薦的機(jī)制和用戶反饋。5、(本題5分)研究一個(gè)利用人工智能進(jìn)行魔術(shù)效果設(shè)計(jì)的案例,分析其創(chuàng)意和視覺(jué)沖擊力。四、操作題(本大題共3個(gè)小題,共30

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論