版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁武漢航海職業(yè)技術(shù)學院
《廣告版式設(shè)計》2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像特征提取中,假設(shè)要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復雜度高,實時性差B.HOG特征對光照變化適應(yīng)性強,但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求2、在計算機視覺中,目標檢測是一項重要任務(wù)。假設(shè)要在一張包含眾多物體的復雜圖像中準確檢測出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復雜。為了實現(xiàn)高精度的車輛檢測,以下哪種方法通常被認為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測和形態(tài)學操作B.使用基于深度學習的目標檢測算法,如FasterR-CNNC.采用簡單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進行匹配D.對圖像進行全局特征提取,然后基于這些特征進行分類3、物體檢測是計算機視覺中的一項關(guān)鍵任務(wù)。假設(shè)一個智能監(jiān)控系統(tǒng)需要檢測場景中的特定物體,如背包、自行車等。以下關(guān)于物體檢測算法的描述,哪一項是不正確的?()A.基于深度學習的物體檢測算法能夠同時檢測多個物體,并給出它們的位置和類別B.可以通過滑動窗口的方法在圖像中搜索可能的物體區(qū)域,然后進行分類判斷C.物體檢測算法需要對大量的標注圖像進行訓練,以學習不同物體的特征D.無論物體的大小、形狀和顏色如何變化,物體檢測算法都能準確檢測到4、計算機視覺在無人駕駛中的應(yīng)用至關(guān)重要。假設(shè)要通過車載攝像頭識別道路上的交通標志和標線,以下關(guān)于應(yīng)對復雜環(huán)境變化的策略,哪一項是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結(jié)合攝像頭和激光雷達的信息B.定期更新模型,適應(yīng)新出現(xiàn)的交通標志和標線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數(shù)據(jù)進行增強訓練5、在圖像分類任務(wù)中,深度學習模型取得了顯著的成果。假設(shè)要對一組包含不同動物的圖像進行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準確率一定越高B.數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪等,對模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計特征6、計算機視覺中的視頻目標跟蹤中,假設(shè)目標在跟蹤過程中發(fā)生了嚴重的形變。以下關(guān)于處理目標形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應(yīng)地處理目標形變,保持跟蹤的準確性B.特征點跟蹤方法對目標形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學習中的孿生網(wǎng)絡(luò)在目標形變時容易丟失目標,無法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對目標形變的跟蹤魯棒性7、在一個基于計算機視覺的工業(yè)質(zhì)量檢測系統(tǒng)中,需要檢測產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對缺陷檢測最為有效?()A.邊緣檢測算法B.形態(tài)學操作C.閾值分割算法D.霍夫變換8、在計算機視覺的動作識別任務(wù)中,識別視頻中的人物動作。假設(shè)要識別一段舞蹈視頻中的動作,以下關(guān)于動作識別方法的描述,哪一項是不正確的?()A.可以提取視頻中的時空特征,如光流和運動軌跡,來描述動作B.基于深度學習的方法,如3D卷積神經(jīng)網(wǎng)絡(luò),能夠直接處理視頻數(shù)據(jù),進行動作識別C.動作識別需要考慮動作的速度、幅度和節(jié)奏等特征D.動作識別只適用于簡單的、規(guī)范化的動作,對于復雜的、個性化的動作無法準確識別9、在一個基于計算機視覺的農(nóng)業(yè)監(jiān)測系統(tǒng)中,需要對農(nóng)作物的生長狀況進行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農(nóng)作物監(jiān)測較為有效?()A.顏色空間轉(zhuǎn)換B.形態(tài)學分析C.紋理分析D.以上都是10、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設(shè)要在一張街景圖像中識別出店鋪招牌上的文字。以下關(guān)于場景文本識別方法的描述,正確的是:()A.基于光學字符識別(OCR)技術(shù)的方法對字體和排版的變化適應(yīng)性強,識別準確率高B.深度學習中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復雜的自然場景中準確無誤地識別出各種文字11、計算機視覺中的目標跟蹤是指在視頻序列中持續(xù)跟蹤特定目標。假設(shè)要跟蹤一個在復雜場景中運動的人物,以下關(guān)于目標跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準確預(yù)測目標的運動軌跡,但對目標外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計算復雜度低,適用于實時跟蹤要求高的場景C.基于深度學習的跟蹤算法需要大量的訓練數(shù)據(jù),并且在目標被遮擋時容易丟失D.目標跟蹤算法只要在初始幀中準確檢測到目標,就能夠在后續(xù)幀中一直保持跟蹤的準確性12、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要分析一段視頻中物體的運動速度和方向。以下關(guān)于光流計算的描述,哪一項是不準確的?()A.可以通過比較連續(xù)幀之間的像素差異來計算光流B.光流計算能夠為視頻中的目標跟蹤和行為分析提供重要信息C.無論視頻的幀率和分辨率如何,光流計算都能準確地估計像素運動D.深度學習方法也被應(yīng)用于光流計算,提高了計算的準確性和效率13、圖像分割是將圖像分成不同的區(qū)域或?qū)ο?。假設(shè)要對醫(yī)學影像中的腫瘤區(qū)域進行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動分割是最準確的方法,不需要借助計算機算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學影像分割問題C.深度學習中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無關(guān)14、在計算機視覺的視頻理解任務(wù)中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術(shù),需要對視頻中的時空信息進行有效建模。以下哪種方法在時空建模方面可能具有優(yōu)勢?()A.3D卷積神經(jīng)網(wǎng)絡(luò)B.長短時記憶網(wǎng)絡(luò)C.注意力機制D.以上都是15、計算機視覺中的圖像修復旨在恢復圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進行修復以還原其完整的內(nèi)容。以下哪種圖像修復方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴散的圖像修復B.基于紋理合成的圖像修復C.基于深度學習的圖像修復D.基于樣例的圖像修復16、計算機視覺中的深度估計是確定場景中物體距離相機的遠近。假設(shè)要為機器人導航提供深度信息,以下關(guān)于深度估計方法的精度要求,哪一項是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級別的深度信息,確保機器人安全導航C.深度估計的精度對機器人導航影響不大,可以忽略D.精度要求取決于機器人的運動速度,速度越快要求精度越低17、在計算機視覺的圖像增強任務(wù)中,假設(shè)要提高一張低光照圖像的質(zhì)量。以下關(guān)于圖像增強方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級,但可能會導致細節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時也會模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對于低光照圖像效果不佳D.所有的圖像增強方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量18、對于圖像的邊緣檢測任務(wù),假設(shè)要準確檢測出圖像中物體的邊緣,同時抑制噪聲的影響。以下哪種邊緣檢測算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機生成邊緣檢測結(jié)果19、在計算機視覺的無人駕駛領(lǐng)域,環(huán)境感知是關(guān)鍵環(huán)節(jié)。假設(shè)要讓無人駕駛汽車準確感知周圍的道路狀況、車輛和行人,同時要應(yīng)對惡劣天氣和復雜交通場景。以下哪種環(huán)境感知技術(shù)在這種高要求的應(yīng)用中發(fā)揮著重要作用?()A.激光雷達感知B.攝像頭視覺感知C.毫米波雷達感知D.以上技術(shù)融合感知20、計算機視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學習方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達到100%的準確率21、假設(shè)我們要開發(fā)一個計算機視覺系統(tǒng),用于檢測生產(chǎn)線上產(chǎn)品的表面缺陷。由于產(chǎn)品的種類繁多、缺陷類型復雜,以下哪種方法可能需要更多的計算資源和時間來訓練模型?()A.基于傳統(tǒng)機器學習的方法B.基于淺層神經(jīng)網(wǎng)絡(luò)的方法C.基于深度學習的方法D.基于模板匹配的方法22、計算機視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實現(xiàn)精準農(nóng)業(yè)。假設(shè)一個農(nóng)場需要通過計算機視覺監(jiān)測農(nóng)作物的生長狀況。以下關(guān)于計算機視覺在農(nóng)業(yè)中的描述,哪一項是錯誤的?()A.可以檢測農(nóng)作物的病蟲害,及時采取防治措施B.能夠評估農(nóng)作物的生長階段和成熟度,指導收獲時間C.計算機視覺在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過無人機搭載攝像頭進行大面積的農(nóng)田監(jiān)測23、計算機視覺中的深度估計是計算場景中物體與相機的距離。假設(shè)我們要為一個增強現(xiàn)實應(yīng)用估計場景的深度信息,以下哪種深度估計方法能夠在實時性和準確性之間取得較好的平衡?()A.基于立體視覺的方法B.基于結(jié)構(gòu)光的方法C.基于深度學習的單目深度估計方法D.基于飛行時間(ToF)原理的方法24、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)25、計算機視覺在智能零售中的應(yīng)用可以改善購物體驗和提高運營效率。假設(shè)一個超市需要通過計算機視覺實現(xiàn)自動結(jié)賬和庫存管理。以下關(guān)于計算機視覺在智能零售中的描述,哪一項是不準確的?()A.可以通過商品識別技術(shù)自動識別顧客購買的商品,實現(xiàn)快速結(jié)賬B.能夠?qū)崟r監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準確識別所有商品的包裝和標簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營銷策略提供數(shù)據(jù)支持二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺在無人駕駛中的障礙物檢測和路徑規(guī)劃。2、(本題5分)說明計算機視覺在智能灌溉中的應(yīng)用。3、(本題5分)解釋計算機視覺中的運動模糊恢復方法。4、(本題5分)簡述圖像的色彩校正工具。三、分析題(本大題共5個小題,共25分)1、(本題5分)探討某文化機構(gòu)的官方網(wǎng)站首頁設(shè)計,研究其如何通過布局、色彩搭配、內(nèi)容展示等吸引用戶訪問,傳遞機構(gòu)的文化使命和活動信息。2、(本題5分)分析蘋果電腦的售后服務(wù)廣告設(shè)計,從專業(yè)服務(wù)展示、客戶滿意度到品牌形象傳達。探討其如何提升用戶的信任度和忠誠度。3、(本題5分)以一個電子產(chǎn)品品牌的平板電
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 店員辭職信范文15篇
- 幼兒園工作實習報告4篇
- 關(guān)于地質(zhì)實習報告范文合集十篇
- 會計專業(yè)實習總結(jié)(精彩7篇)
- 小學軍訓心得體會集合15篇
- 2024年度新型地下儲藏室租賃及倉儲配送管理服務(wù)合同3篇
- 2024年電商企業(yè)社會責任履行合同
- 2024年摩托車俱樂部會員權(quán)益轉(zhuǎn)讓協(xié)議3篇
- 2024年北師大版八年級化學下冊階段測試試卷
- 商業(yè)視角下的學校心理健康教育方案
- 大班幼兒集體教學活動中有效提問的現(xiàn)狀及其改進
- 房屋裝修售后服務(wù)方案
- 無菌注射劑生產(chǎn)線清潔驗證方案
- 民航服務(wù)禮儀(民航服務(wù)類專業(yè))全套教學課件
- 2024年健康照護師理論試題
- 《可燃氣體檢測儀》課件
- 《黃土高填方地基技術(shù)規(guī)程》
- 部編版九年級中考復習戲劇閱讀 (教師版)
- 裸光纖施工方案
- 《經(jīng)典動畫賞析》課件
- 小學英語-Unit2 Ways to go to school Part B Read and write教學設(shè)計學情分析教材分析課后反思
評論
0/150
提交評論