山東省德州市齊河縣一中2025屆高考數(shù)學四模試卷含解析_第1頁
山東省德州市齊河縣一中2025屆高考數(shù)學四模試卷含解析_第2頁
山東省德州市齊河縣一中2025屆高考數(shù)學四模試卷含解析_第3頁
山東省德州市齊河縣一中2025屆高考數(shù)學四模試卷含解析_第4頁
山東省德州市齊河縣一中2025屆高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省德州市齊河縣一中2025屆高考數(shù)學四模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.2.函數(shù)的大致圖象是()A. B.C. D.3.已知等比數(shù)列滿足,,則()A. B. C. D.4.函數(shù)(且)的圖象可能為()A. B. C. D.5.我國古代數(shù)學家秦九韶在《數(shù)書九章》中記述了“三斜求積術”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.6.在條件下,目標函數(shù)的最大值為40,則的最小值是()A. B. C. D.27.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值8.若數(shù)列滿足且,則使的的值為()A. B. C. D.9.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.10.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.11.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.12.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值為________.14.設數(shù)列為等差數(shù)列,其前項和為,已知,,若對任意都有成立,則的值為__________.15.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.16.設為銳角,若,則的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.18.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.19.(12分)已知直線l的極坐標方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.20.(12分)在平面直角坐標系xOy中,拋物線C:,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為().(1)求拋物線C的極坐標方程;(2)若拋物線C與直線l交于A,B兩點,求的值.21.(12分)某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1

(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當?shù)钠矫嬷苯亲鴺讼?,并求棧道AB的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標系中,寫出觀測點P的坐標.22.(10分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α1

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.2、A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎題.3、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.4、D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質;2.函數(shù)的圖象.5、A【解析】

根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.6、B【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數(shù),根據(jù)圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學生的綜合應用能力.7、C【解析】

采用逐一驗證法,根據(jù)線線、線面之間的關系以及四面體的體積公式,可得結果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質定理,中檔題.8、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設可得,則,應選答案C.9、D【解析】

設,,作為一個基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.10、D【解析】

依次將選項中的代入,結合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調性,涉及到誘導公式的應用,是一道容易題.11、D【解析】

根據(jù)向量垂直則數(shù)量積為零,結合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應用,涉及由向量垂直求參數(shù)值,屬基礎題.12、A【解析】

如圖設平面,球心在上,根據(jù)正四面體的性質可得,根據(jù)平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結合,即可容易求得目標函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結合思想,屬基礎題.14、【解析】

由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質求出的最大值及其對應的值,即可得解.【詳解】設等差數(shù)列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點睛】本題考查等差數(shù)列前項和最值的計算,一般利用二次函數(shù)的基本性質求解,考查計算能力,屬于中等題.15、【解析】

基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個數(shù)m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.16、【解析】

∵為銳角,,∴,∴,,故.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)直接利用轉換公式,把參數(shù)方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數(shù)求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數(shù)方程與極坐標方程的互化,三角函數(shù)的值域求解等知識,考查了學生的運算求解能力.18、(1)見解析;(2)【解析】

(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內過作的垂線為軸建立空間直角坐標系,由已知求出線段長,得出各點坐標,用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內過作的垂線為軸建立空間直角坐標系,如圖,則,,,設平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉化.求空間角,常用方法就是建立空間直角坐標系,用空間向量法求空間角.19、(1).x2+y2=1.(2)16【解析】

(1)直接利用極坐標方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點睛】本題考查了極坐標方程和參數(shù)方程,圓的弦長,意在考查學生的計算能力和轉化能力.20、(1)(2)【解析】

(1)利用極坐標和直角坐標的互化公式,,即可求得結果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達定理,,即可求得結果.【詳解】(1)因為,,代入得,所以拋物線C的極坐標方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點睛】本題考查直角坐標和極坐標的轉化,考查極坐標方程的綜合應用,考查了學生綜合分析,轉化與劃歸,數(shù)學運算的能力,難度一般.21、(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】

(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設出方程,通過點的坐標可求方程;(2)設出的坐標,表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標.【詳解】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設拋物線方程為代入點B得:p=1,故方程為,x[0,1];(2)設P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論