版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省萊州一中2025屆高三最后一卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)滿足不等式組,則的最小值為()A. B. C. D.2.若函數(shù)在時取得最小值,則()A. B. C. D.3.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.4.已知函數(shù),集合,,則()A. B.C. D.5.為了進一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種6.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.7.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.8.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.9.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,若對任意的恒成立,則實數(shù)().A.6 B.5 C.4 D.310.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.11.設(shè),則關(guān)于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線12.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)全集,集合,,則集合______.14.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.15.在中,為定長,,若的面積的最大值為,則邊的長為____________.16.已知數(shù)列的前項和為且滿足,則數(shù)列的通項_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.18.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?19.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?20.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數(shù)據(jù):)21.(12分)已知函數(shù).(Ⅰ)當時,討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.22.(10分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當直線經(jīng)過點時,截距最小,故,即的最小值為.故選:B【點睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標函數(shù)的意義,屬于基礎(chǔ)題.2、D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結(jié)合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.4、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.5、C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.6、A【解析】
設(shè)E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應(yīng)的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結(jié)果.【詳解】設(shè)E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關(guān)平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.7、B【解析】
求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.8、B【解析】
采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關(guān)于原點對稱,因為,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數(shù)的奇偶性和特殊點函數(shù)值符號判斷函數(shù)圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、??碱}型.9、C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內(nèi)角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數(shù)列前n項和的最值問題,考查學(xué)生的計算能力,是一道基礎(chǔ)題.10、C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點睛】本小題考查數(shù)列的通項與前項和的關(guān)系等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力,應(yīng)用意識.11、C【解析】
根據(jù)條件,方程.即,結(jié)合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標準方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.12、B【解析】
由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對值不等式求得結(jié)果.【詳解】由題意知:定義域為,,為偶函數(shù),當時,,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進而化簡不等式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分別解得集合A與集合B的補集,再由集合交集的運算法則計算求得答案.【詳解】由題可知,集合A中集合B的補集,則故答案為:【點睛】本題考查集合的交集與補集運算,屬于基礎(chǔ)題.14、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,15、【解析】
設(shè),以為原點,為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進一步求出的值即為所求.【詳解】解:設(shè),以為原點,為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點睛】本題考查向量模的計算,建系是關(guān)鍵,屬于難題.16、【解析】
先求得時;再由可得時,兩式作差可得,進而求解.【詳解】當時,,解得;由,可知當時,,兩式相減,得,即,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,故答案為:【點睛】本題考查由與的關(guān)系求通項公式,考查等比數(shù)列的通項公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)或【解析】
(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標方程,再由,,可得點的軌跡的極坐標方程;(2)將曲線極坐標方程求,與直線極坐標方程聯(lián)立,消去,得到關(guān)于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標方程為,圓的圓心為,設(shè),所以,則由,即為點軌跡的極坐標方程.(2)曲線的極坐標方程為,將與曲線的極坐標方程聯(lián)立得,,設(shè),所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點睛】此題考查參數(shù)方程與普通方程的互化,極坐標方程與直角坐標方程的互化,利用極坐標求點的軌跡方程,考查運算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.18、(1),定義域是.(2)百萬【解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系.設(shè),則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當時,,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最?。?,得,設(shè)銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【點睛】本題考查三角函數(shù)模型的實際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.19、(1)證明見解析;(2)當時,AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過作,可證平面,根據(jù)計算,得出的大小,再計算的長.【詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面PCD所成的角為.【點睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計算,屬于中檔題.20、(1);(2)證明見解析.【解析】
(1)求出函數(shù)的定義域為,,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實數(shù)的不等式,進而可求得實數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【詳解】(1)函數(shù)的定義域為,且.當時,對任意的,,此時函數(shù)在上為增函數(shù),函數(shù)為最大值;當時,令,得.當時,,此時函數(shù)單調(diào)遞增;當時,,此時函數(shù)單調(diào)遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實數(shù)的取值范圍是;(2)當時,,定義域為,,當時,;當時,.所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.由于函數(shù)有兩個零點、且,,,構(gòu)造函數(shù),其中,,令,,當時,,所以,函數(shù)在區(qū)間上單調(diào)遞減,則,則.所以,函數(shù)在區(qū)間上單調(diào)遞減,,,即,即,,且,而函數(shù)在上為減函數(shù),所以,,因此,.【點睛】本題考查利用函數(shù)的最值求參
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年養(yǎng)殖場承包合同范本:養(yǎng)殖場安全生產(chǎn)與應(yīng)急預(yù)案3篇
- 2024宅基地使用權(quán)轉(zhuǎn)讓與土地承包經(jīng)營權(quán)合同范本3篇
- 2024年標準版建筑工程外墻腳手架協(xié)議模板版
- 2024年度能源管理投標保密合同范本3篇
- 2024年度高端文化石裝飾工程采購合同范本3篇
- 2024年度產(chǎn)業(yè)園區(qū)債轉(zhuǎn)股項目借款合同范本3篇
- 2024年度教育信息化三方合伙協(xié)議書3篇
- 第三章陸地與海洋同步訓(xùn)練-2023-2024學(xué)年七年級地理上學(xué)期粵人版
- 2024年電氣火災(zāi)的應(yīng)急預(yù)案
- 2024年大學(xué)生心理健康知識競賽考試題庫500題(含答案)
- DL∕T 802.2-2017 電力電纜用導(dǎo)管 第2部分:玻璃纖維增強塑料電纜導(dǎo)管
- 全國計算機等級考試二級Python復(fù)習(xí)備考題庫(含答案)
- 《生物安全培訓(xùn)》課件-2024鮮版
- 更換電梯協(xié)議書范本
- 湖北省仙桃市2023-2024學(xué)年七年級下學(xué)期期末地理試題(無答案)
- JTG-D40-2011公路水泥混凝土路面設(shè)計規(guī)范
- 測繪公司工作個人年度總結(jié)
- MOOC 普通植物病理學(xué)-西北農(nóng)林科技大學(xué) 中國大學(xué)慕課答案
- 【新收入準則對建筑企業(yè)會計核算的影響:以J公司為例14000字(論文)】
- icu護士年終工作總結(jié)
- 四川省宜賓市2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測數(shù)學(xué)試卷(解析版)
評論
0/150
提交評論