版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省眉山市仁壽縣文宮中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.不等式組表示的平面區(qū)域?yàn)椋瑒t()A., B.,C., D.,2.一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.3.已知是平面內(nèi)互不相等的兩個(gè)非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.5.學(xué)業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個(gè)等級.某班共有名學(xué)生且全部選考物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測試成績?nèi)鐖D所示.該班學(xué)生中,這兩科等級均為的學(xué)生有人,這兩科中僅有一科等級為的學(xué)生,其另外一科等級為,則該班()A.物理化學(xué)等級都是的學(xué)生至多有人B.物理化學(xué)等級都是的學(xué)生至少有人C.這兩科只有一科等級為且最高等級為的學(xué)生至多有人D.這兩科只有一科等級為且最高等級為的學(xué)生至少有人6.設(shè)集合,,若,則()A. B. C. D.7.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.8.盒子中有編號為1,2,3,4,5,6,7的7個(gè)相同的球,從中任取3個(gè)編號不同的球,則取的3個(gè)球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.9.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.10.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.11.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,它的終邊過點(diǎn),則的值為()A. B. C. D.12.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學(xué)家艾約瑟提出并為后來許多中國的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對中國古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學(xué)三年級共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計(jì)該校三級的500名學(xué)生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為__________.14.如圖,、分別是雙曲線的左、右焦點(diǎn),過的直線與雙曲線的兩條漸近線分別交于、兩點(diǎn),若,,則雙曲線的離心率是______.15.已知實(shí)數(shù),滿足,則的最大值為______.16.已知函數(shù)的部分圖象如圖所示,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系中,已知圓C:,橢圓E:()的右頂點(diǎn)A在圓C上,右準(zhǔn)線與圓C相切.(1)求橢圓E的方程;(2)設(shè)過點(diǎn)A的直線l與圓C相交于另一點(diǎn)M,與橢圓E相交于另一點(diǎn)N.當(dāng)時(shí),求直線l的方程.18.(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項(xiàng)和為,滿足,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前n項(xiàng)和,求.20.(12分)如圖在四邊形中,,,為中點(diǎn),.(1)求;(2)若,求面積的最大值.21.(12分)誠信是立身之本,道德之基,我校學(xué)生會創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠信數(shù)據(jù)統(tǒng)計(jì):第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計(jì)算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個(gè)周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計(jì)算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學(xué)生會分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.22.(10分)已知橢圓經(jīng)過點(diǎn),離心率為.(1)求橢圓的方程;(2)過點(diǎn)的直線交橢圓于、兩點(diǎn),若,在線段上取點(diǎn),使,求證:點(diǎn)在定直線上.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標(biāo)函數(shù)幾何意義的認(rèn)識,屬于基礎(chǔ)題.2、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點(diǎn)睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.3、C【解析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).4、C【解析】
根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時(shí).【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時(shí),滿足輸出的值為8.故選:C【點(diǎn)睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡單題目.5、D【解析】
根據(jù)題意分別計(jì)算出物理等級為,化學(xué)等級為的學(xué)生人數(shù)以及物理等級為,化學(xué)等級為的學(xué)生人數(shù),結(jié)合表格中的數(shù)據(jù)進(jìn)行分析,可得出合適的選項(xiàng).【詳解】根據(jù)題意可知,名學(xué)生減去名全和一科為另一科為的學(xué)生人(其中物理化學(xué)的有人,物理化學(xué)的有人),表格變?yōu)椋何锢砘瘜W(xué)對于A選項(xiàng),物理化學(xué)等級都是的學(xué)生至多有人,A選項(xiàng)錯(cuò)誤;對于B選項(xiàng),當(dāng)物理和,化學(xué)都是時(shí),或化學(xué)和,物理都是時(shí),物理、化學(xué)都是的人數(shù)最少,至少為(人),B選項(xiàng)錯(cuò)誤;對于C選項(xiàng),在表格中,除去物理化學(xué)都是的學(xué)生,剩下的都是一科為且最高等級為的學(xué)生,因?yàn)槎际堑膶W(xué)生最少人,所以一科為且最高等級為的學(xué)生最多為(人),C選項(xiàng)錯(cuò)誤;對于D選項(xiàng),物理化學(xué)都是的最多人,所以兩科只有一科等級為且最高等級為的學(xué)生最少(人),D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查合情推理,考查推理能力,屬于中等題.6、A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.7、B【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡z,復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.8、B【解析】
由題意,取的3個(gè)球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個(gè)球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個(gè)球的編號的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、D【解析】
通過計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.10、B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學(xué)生的運(yùn)算求解能力.11、B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點(diǎn),∴,.∴.故選:.【點(diǎn)睛】本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計(jì)算能力.12、D【解析】
先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點(diǎn)睛】本小題主要考查利用樣本估計(jì)總體,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、20,21【解析】
由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.14、【解析】
根據(jù)三角形中位線證得,結(jié)合判斷出垂直平分,由此求得的值,結(jié)合求得的值.【詳解】∵,∴為中點(diǎn),,∵,∴垂直平分,∴,即,∴,,即.故答案為:【點(diǎn)睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15、【解析】
畫出不等式組表示的平面區(qū)域,將目標(biāo)函數(shù)理解為點(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因?yàn)榭梢岳斫鉃辄c(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合可知,當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),斜率取得最大值,故的最大值為.故答案為:.【點(diǎn)睛】本題考查目標(biāo)函數(shù)為斜率型的規(guī)劃問題,屬基礎(chǔ)題.16、【解析】
由圖可得的周期、振幅,即可得,再將代入可解得,進(jìn)一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點(diǎn)睛】本題考查由圖象求解析式及函數(shù)值,考查學(xué)生識圖、計(jì)算等能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】
(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設(shè),,顯然直線l的斜率存在,方法一:設(shè)直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設(shè)直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點(diǎn)在圓C上,右準(zhǔn)線與圓C:相切.解得,,橢圓方程為:.(2)法1:設(shè),,顯然直線l的斜率存在,設(shè)直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯(lián)立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設(shè),,當(dāng)直線l與x軸重合時(shí),不符題意.設(shè)直線l的方程為:.由方程組消去x得,,解得.由方程組消去x得,,解得.又,則有.即,解得,故直線l的方程為或.【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,以及直線和橢圓的位置關(guān)系,考查學(xué)生的分析和運(yùn)算能力.18、(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據(jù)公式計(jì)算卡方值,再對應(yīng)卡值表判斷..(2)根據(jù)題意,隨機(jī)變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據(jù)期望公式求值.(3)因?yàn)橹辽?個(gè)的偶數(shù)個(gè)十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個(gè)路口中有個(gè)路口種植楊樹,下面分類討論①當(dāng)時(shí),由論證.②當(dāng)時(shí),由論證.③當(dāng)時(shí),,設(shè),再論證當(dāng)時(shí),取得最小值即可.【詳解】(1)本次實(shí)驗(yàn)中,,故沒有99.9%的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因?yàn)椋?設(shè)個(gè)路口中有個(gè)路口種植楊樹,①當(dāng)時(shí),,因?yàn)椋?,于?②當(dāng)時(shí),,同上可得③當(dāng)時(shí),,設(shè),當(dāng)時(shí),,顯然,當(dāng)即時(shí),,當(dāng)即時(shí),,即;,因此,即.綜上,,即.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的分布列以及期望、排列組合,還考查運(yùn)算求解能力以及必然與或然思想,屬于難題.19、(1),;(2).【解析】
(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項(xiàng)公式;(2)奇數(shù)項(xiàng)分一組用裂項(xiàng)相消法求和,偶數(shù)項(xiàng)分一組用等比數(shù)列求和公式求和.【詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時(shí),,為偶數(shù)時(shí),,∴.【點(diǎn)睛】本題考查求等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查分組求和法及裂項(xiàng)相消法、等差數(shù)列與等比數(shù)列的前項(xiàng)和公式,求通項(xiàng)公式采取的是基本量法,即求出公差、公比,由通項(xiàng)公式前項(xiàng)和公式得出相應(yīng)結(jié)論.?dāng)?shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯(cuò)位相減法,裂項(xiàng)相消法,分組(并項(xiàng))求和法,倒序相加法等等.20、(1)1;(2)【解析】
(1),在和中分別運(yùn)用余弦定理可表示出,運(yùn)用算兩次的思想即可求得,進(jìn)而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設(shè),則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時(shí).【點(diǎn)睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度能源項(xiàng)目墊資服務(wù)合同模板2篇
- 二零二五年度10千伏電力施工項(xiàng)目監(jiān)理合同范本3篇
- 2025年度包裝盒材料研發(fā)生產(chǎn)與銷售合同范本3篇
- 2024年車輛損害賠償快速處理協(xié)議
- 2025年測波儀項(xiàng)目發(fā)展計(jì)劃
- 2024年股權(quán)投資協(xié)議及股東義務(wù)版B版
- 2025年度拌合站場地租賃與環(huán)保設(shè)施配套合同3篇
- 2024年綠化苗木種植與城市綠化景觀設(shè)計(jì)合同3篇
- 2024年網(wǎng)絡(luò)游戲運(yùn)營合同
- 2025版智慧城市建設(shè)整體解決方案提供合同2篇
- 戈19商務(wù)方案第十九屆玄奘之路戈壁挑戰(zhàn)賽商務(wù)合作方案
- 廣西河池市宜州區(qū)2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試卷(含解析)
- 2024高考政治真題-哲學(xué)-匯集(解析版)
- 對承租方有利的商鋪?zhàn)赓U合同
- 投標(biāo)突發(fā)事件應(yīng)急預(yù)案
- EPC項(xiàng)目土建設(shè)計(jì)的重難點(diǎn)分析及解決措施
- 醫(yī)院保安服務(wù)應(yīng)急預(yù)案
- 2024年廣東省揭陽市榕城區(qū)實(shí)驗(yàn)小學(xué)小升初銜接問卷數(shù)學(xué)試卷
- 江西警察學(xué)院治安學(xué)專業(yè)主干課程教學(xué)大綱 文檔
- 浙江大學(xué)2011–2012學(xué)年冬季學(xué)期《高級數(shù)據(jù)結(jié)構(gòu)與算法分析》課程期末考試試卷
- MOOC 信號與系統(tǒng)-西北工業(yè)大學(xué) 中國大學(xué)慕課答案
評論
0/150
提交評論