版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江蘇省常州中學(xué)高考數(shù)學(xué)三模試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)滿足對(duì)任意都有成立,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,,則的值為()A.0 B.2 C.4 D.12.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.3.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.函數(shù)(或)的圖象大致是()A. B. C. D.5.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件6.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.7.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.8.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點(diǎn)為,若F到直線的距離為,則E的離心率為()A. B. C. D.9.如圖,四邊形為正方形,延長(zhǎng)至,使得,點(diǎn)在線段上運(yùn)動(dòng).設(shè),則的取值范圍是()A. B. C. D.10.已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),則線段的最小值為()A. B. C. D.611.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個(gè)數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.12.若復(fù)數(shù),則()A. B. C. D.20二、填空題:本題共4小題,每小題5分,共20分。13.集合,,若是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;14.已知向量,,且,則________.15.設(shè)函數(shù),若在上的最大值為,則________.16.若雙曲線的離心率為,則雙曲線的漸近線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域;(2)的角的對(duì)邊分別為且,,求邊上的高的最大值.18.(12分)如圖,三棱柱中,側(cè)面是菱形,其對(duì)角線的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.19.(12分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù),且.(1)若,求的最小值,并求此時(shí)的值;(2)若,求證:.21.(12分)在極坐標(biāo)系中,直線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點(diǎn)的直角坐標(biāo).22.(10分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱,所以的圖象關(guān)于原點(diǎn)對(duì)稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因?yàn)椋?因?yàn)?,故,所?故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.2、C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.3、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.4、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.5、C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.6、D【解析】
根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.7、B【解析】
由可得,所以,故選B.8、A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點(diǎn)睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時(shí),通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.9、C【解析】
以為坐標(biāo)原點(diǎn),以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算計(jì)算即可解決.【詳解】以為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長(zhǎng)為1,則,,設(shè),則,所以,且,故.故選:C.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求變量的取值范圍,考查學(xué)生的基本計(jì)算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.10、C【解析】
利用導(dǎo)數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點(diǎn)到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),可知拋物線存在某條切線與直線平行,則,設(shè)拋物線的切點(diǎn)為,則由可得,,所以切點(diǎn)為,則切點(diǎn)到直線的距離為線段的最小值,則.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,以及點(diǎn)到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計(jì)算能力.11、A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項(xiàng)和公式和對(duì)數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點(diǎn)睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項(xiàng)和公式應(yīng)用,屬于中檔題12、B【解析】
化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】
根據(jù)對(duì)稱性,只需研究第一象限的情況,計(jì)算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對(duì)稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時(shí),,此時(shí).故答案為:②③.【點(diǎn)睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,利用對(duì)稱性是解題的關(guān)鍵.14、【解析】
根據(jù)垂直向量的坐標(biāo)表示可得出關(guān)于實(shí)數(shù)的等式,即可求得實(shí)數(shù)的值.【詳解】,且,則,解得.故答案為:.【點(diǎn)睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標(biāo)表示,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域?yàn)?,在上單調(diào)遞增,故在上的最大值為故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.16、【解析】
利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)由題意利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當(dāng)時(shí),,.(2)中,,∴.由余弦定理可得,當(dāng)且僅當(dāng)時(shí),取等號(hào),即的最大值為3.再根據(jù),故當(dāng)取得最大值3時(shí),取得最大值為.【點(diǎn)睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.18、(1)見解析;(2).【解析】
(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線面垂直的定義和判定定理即可證明;
2建立空間直角坐標(biāo)系,利用向量知識(shí)求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點(diǎn),,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因?yàn)?,則在等腰直角三角形中,所以.在中,由得,以為原點(diǎn),分別以為軸建立空間直角坐標(biāo)系.則所以設(shè)平面的一個(gè)法向量為,則,可得,取平面的一個(gè)法向量為,則,所以二面角的正弦值的大小為.(注:?jiǎn)栴}(2)可以轉(zhuǎn)化為求二面角的正弦值,求出后,在中,過點(diǎn)作的垂線,垂足為,連接,則就是所求二面角平面角的補(bǔ)角,先求出,再求出,最后在中求出.)【點(diǎn)睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.19、(1);(2)【解析】
(1)對(duì)函數(shù)求導(dǎo),運(yùn)用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因?yàn)樵邳c(diǎn)與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時(shí),,在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),開口向上,對(duì)稱軸為,,所以在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),二次函數(shù)開口向下,且,所以在時(shí)有一個(gè)零點(diǎn),在時(shí),在時(shí),①當(dāng)即時(shí),在小于零,所以在時(shí)為減函數(shù),所以,符合題意;②當(dāng)即時(shí),在大于零,所以在時(shí)為增函數(shù),所以,舍.綜上所述:實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問題時(shí),注意利用導(dǎo)函數(shù)的正負(fù),特別是已知單調(diào)性問題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時(shí)分析好單調(diào)性再求極值,從而求出函數(shù)最值.20、(1)最小值為,此時(shí);(2)見解析【解析】
(1)由已知得,法一:,,根據(jù)二次函數(shù)的最值可求得;法二:運(yùn)用基本不等式構(gòu)造,可得最值;法三:運(yùn)用柯西不等式得:,可得最值;(2)由絕對(duì)值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時(shí);法二:,,即的最小值為,此時(shí);法三:由柯西不等式得:,,即的最小值為,此時(shí);(2),,又,.【點(diǎn)睛】本題考查運(yùn)用基本不等式,柯西不等式,絕對(duì)值不等式進(jìn)行不等式的證明和求解函數(shù)的最值,屬于中檔題.21、【解析】
將直線的極坐標(biāo)方程和曲線的參數(shù)方程分別化為直角坐標(biāo)方程,聯(lián)立直角坐標(biāo)方程求出交點(diǎn)坐標(biāo),結(jié)合的取值范圍進(jìn)行取舍即可.【詳解】因?yàn)橹本€的極坐標(biāo)方程為,所以直線的普通方程為,又因?yàn)榍€的參數(shù)方程為(為參數(shù)),所以曲線的直角坐標(biāo)方程為,聯(lián)立方程,解得或,因?yàn)?,所以舍去,故點(diǎn)的直角坐標(biāo)為.【點(diǎn)睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 22024版?zhèn)€人理財(cái)顧問合同范本:某銀行與客戶理財(cái)服務(wù)合同
- 2024年設(shè)備質(zhì)保服務(wù)與支持協(xié)議版
- 2024年道路清障拖車作業(yè)合同規(guī)范文本3篇
- 山洪災(zāi)害防御知識(shí)培訓(xùn)課件
- 2024音樂素材購(gòu)買及使用權(quán)授權(quán)合同:視頻素材
- 2024年零售連鎖店經(jīng)營(yíng)承包合同范本版B版
- 《技術(shù)模板》課件
- 浙江廣廈建設(shè)職業(yè)技術(shù)大學(xué)《大數(shù)據(jù)挖掘技術(shù)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024施工合同煙囪施工施工圖紙?jiān)O(shè)計(jì)合同3篇
- 2024年環(huán)保設(shè)施運(yùn)營(yíng)合同3篇
- 2024年國(guó)家公安部直屬事業(yè)單位招錄人民警察及工作人員696人筆試(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 初中必背古詩(shī)文138首
- 車站調(diào)度員(技師)技能鑒定理論考試題庫(kù)(含答案)
- 2024年房屋交接確認(rèn)書
- 【深信服】PT1-AF認(rèn)證考試復(fù)習(xí)題庫(kù)(含答案)
- 反芻動(dòng)物消化道排泄物原蟲診斷技術(shù)規(guī)范
- 開放系統(tǒng)10861《理工英語(yǔ)(4)》期末機(jī)考真題及答案(第102套)
- 2024年國(guó)家能源集團(tuán)招聘筆試參考題庫(kù)含答案解析
- GB/T 43824-2024村鎮(zhèn)供水工程技術(shù)規(guī)范
- 初中地理學(xué)法指導(dǎo)課
- 體檢中心質(zhì)控工作計(jì)劃
評(píng)論
0/150
提交評(píng)論