四川師范大學《人工智能導論Ⅰ》2023-2024學年第一學期期末試卷_第1頁
四川師范大學《人工智能導論Ⅰ》2023-2024學年第一學期期末試卷_第2頁
四川師范大學《人工智能導論Ⅰ》2023-2024學年第一學期期末試卷_第3頁
四川師范大學《人工智能導論Ⅰ》2023-2024學年第一學期期末試卷_第4頁
四川師范大學《人工智能導論Ⅰ》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁四川師范大學

《人工智能導論Ⅰ》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的強化學習算法在機器人足球比賽中可以訓練機器人球員的策略。假設要讓機器人球隊在比賽中取得更好的成績,以下哪個方面是強化學習算法需要重點優(yōu)化的?()A.球員的動作控制B.團隊的協(xié)作策略C.球場環(huán)境的建模D.對手行為的預測2、人工智能在智能客服領域的應用越來越廣泛。以下關于人工智能智能客服的說法,不正確的是()A.能夠快速回答常見問題,提高客戶服務的響應速度B.可以通過自然語言交互理解客戶的需求和意圖C.智能客服能夠完全替代人工客服,提供同樣優(yōu)質和全面的服務D.仍需要不斷改進和優(yōu)化,以提高回答的準確性和滿意度3、在人工智能的優(yōu)化算法中,隨機梯度下降(SGD)是常用的方法之一。假設在訓練一個深度學習模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結合使用4、自然語言處理是人工智能的重要研究方向之一,其目標是讓計算機理解和生成人類語言。以下關于自然語言處理的說法,錯誤的是()A.詞法分析、句法分析和語義理解是自然語言處理中的關鍵步驟B.機器翻譯是自然語言處理的重要應用之一,但目前的機器翻譯質量已經(jīng)完全達到了人類翻譯的水平C.文本分類、情感分析和信息抽取等任務都屬于自然語言處理的范疇D.自然語言處理面臨著詞匯歧義、句法結構復雜和語義理解困難等諸多挑戰(zhàn)5、在人工智能的決策樹算法中,當進行特征選擇來構建決策樹時,以下哪種特征選擇標準通常能夠產(chǎn)生更優(yōu)的決策樹?()A.信息增益B.基尼系數(shù)C.隨機選擇特征D.選擇特征數(shù)量最多的特征6、當利用人工智能進行智能醫(yī)療影像診斷,例如檢測腫瘤或病變,以下哪種挑戰(zhàn)和問題可能是需要重點解決的?()A.數(shù)據(jù)標注的準確性和一致性B.模型的泛化能力和魯棒性C.結果的解釋和臨床可接受性D.以上都是7、人工智能中的聚類算法用于將數(shù)據(jù)分組為不同的簇。假設要對一組客戶數(shù)據(jù)進行聚類分析。以下關于聚類算法的描述,哪一項是不準確的?()A.K-Means算法是一種常見的聚類算法,需要事先指定簇的數(shù)量B.聚類算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結構,幫助進行市場細分等應用C.不同的聚類算法在不同的數(shù)據(jù)分布和場景下表現(xiàn)各異,需要根據(jù)實際情況選擇D.聚類結果是唯一確定的,不受算法參數(shù)和初始值的影響8、在人工智能的圖像語義分割任務中,需要將圖像中的每個像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開來。假設圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語義分割的精度?()A.使用更高分辨率的圖像進行訓練B.采用簡單的分割算法,降低計算復雜度C.忽略物體邊界的像素,只關注主要區(qū)域D.不進行任何預處理,直接對原始圖像進行分割9、人工智能在智能家居領域的應用為人們的生活帶來了便利。以下關于人工智能在智能家居應用的描述,不準確的是()A.可以實現(xiàn)家電的智能控制和自動化運行,根據(jù)用戶的習慣和需求進行個性化設置B.通過語音指令和智能傳感器,提供便捷的家居服務和環(huán)境監(jiān)測C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應用還處于初級階段,功能較為單一,無法滿足用戶的多樣化需求10、在人工智能的藥物研發(fā)中,機器學習可以輔助藥物分子的設計和篩選。假設要開發(fā)一種治療特定疾病的新藥,以下哪種機器學習方法可能最有助于找到潛在的有效分子結構?()A.分類算法B.回歸分析C.聚類分析D.強化學習11、人工智能中的多模態(tài)學習旨在融合多種不同類型的數(shù)據(jù),如圖像、文本、音頻等。假設要開發(fā)一個能夠同時理解視頻中的圖像內容和音頻解說的系統(tǒng),以下哪種多模態(tài)學習方法在整合和理解這些異構數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機制D.混合融合12、人工智能在制造業(yè)中的應用可以提高生產(chǎn)效率和質量。以下關于人工智能在制造業(yè)應用的說法,不正確的是()A.可以實現(xiàn)生產(chǎn)過程的自動化監(jiān)控和故障預測,減少停機時間B.能夠優(yōu)化生產(chǎn)流程和資源配置,降低生產(chǎn)成本C.人工智能在制造業(yè)的應用需要大量的前期投資,但長期來看效益顯著D.制造業(yè)中的所有環(huán)節(jié)都已經(jīng)實現(xiàn)了人工智能的全面應用,不存在尚未被覆蓋的領域13、在人工智能的自然語言生成任務中,假設要生成一篇連貫且有邏輯的文章,以下關于模型訓練的策略,哪一項是不正確的?()A.使用預訓練的語言模型,并在特定任務上進行微調B.從簡單的句子生成開始,逐漸過渡到復雜的文章生成C.不使用任何先驗知識或語言規(guī)則,完全依靠數(shù)據(jù)驅動的學習D.引入對抗訓練,提高生成文本的質量和多樣性14、在機器學習中,監(jiān)督學習和無監(jiān)督學習是兩種主要的學習方式??紤]一個場景,我們有大量未標記的圖像數(shù)據(jù),希望從中發(fā)現(xiàn)一些潛在的模式和結構。以下哪種機器學習方法更適合這種情況?()A.線性回歸B.決策樹C.聚類分析D.邏輯回歸15、在人工智能的語音識別任務中,需要克服許多挑戰(zhàn)。假設要開發(fā)一個能夠在嘈雜環(huán)境中準確識別語音的系統(tǒng),以下關于解決噪聲問題的方法,哪一項是不正確的?()A.使用麥克風陣列技術,對多個麥克風采集的信號進行處理,增強有用信號,抑制噪聲B.采用深度學習中的降噪自編碼器,對輸入的語音信號進行預處理,去除噪聲C.完全忽略噪聲,只關注語音的關鍵特征D.利用語音增強算法,提高語音的信噪比16、在人工智能的自動駕駛倫理問題中,假設一輛自動駕駛汽車面臨不可避免的碰撞,必須在保護車內乘客和避免撞到行人之間做出選擇。以下關于這種倫理困境的解決方法,哪一項是最具爭議的?()A.優(yōu)先保護車內乘客的生命安全,因為他們是車輛的使用者B.隨機做出選擇,將命運交給概率C.設計算法,根據(jù)具體情況(如行人的數(shù)量、年齡等)進行權衡D.完全由汽車制造商決定默認的選擇策略,用戶無法干預17、人工智能在自動駕駛領域有重要的應用。假設一輛自動駕駛汽車在行駛過程中需要做出決策,以下關于自動駕駛中的人工智能決策的描述,正確的是:()A.自動駕駛汽車的決策完全依賴于預先設定的規(guī)則和算法,不具備自主學習和適應能力B.復雜的交通環(huán)境和意外情況不會對自動駕駛汽車的決策造成困難,因為其具有完美的感知和預測能力C.自動駕駛汽車在決策時需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預對自動駕駛汽車的決策沒有任何幫助,反而可能導致系統(tǒng)混亂18、在人工智能的圖像識別模型中,假設需要提高模型對不同光照條件下圖像的魯棒性。以下哪種數(shù)據(jù)增強方法可能有效?()A.隨機改變圖像的亮度和對比度B.對圖像進行裁剪和縮放C.旋轉圖像一定角度D.以上都是19、假設在一個智能教育系統(tǒng)中,需要利用人工智能為學生提供個性化的學習路徑和資源推薦。為了準確評估學生的學習狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學習行為數(shù)據(jù)和聚類分析B.知識掌握程度數(shù)據(jù)和回歸分析C.學習偏好數(shù)據(jù)和分類算法D.以上都是20、生成對抗網(wǎng)絡(GAN)是一種熱門的人工智能技術。假設要使用GAN生成逼真的圖像,以下關于GAN的描述,正確的是:()A.GAN由一個生成器和一個判別器組成,它們相互競爭,共同提高生成效果B.生成器的目標是盡量使生成的圖像與真實圖像差異增大,以迷惑判別器C.判別器的能力越強,生成器生成的圖像質量就越差D.GAN只能用于圖像生成,不能應用于其他領域,如音頻生成21、強化學習是人工智能的一個重要分支,常用于訓練智能體做出最優(yōu)決策。假設一個智能體在一個復雜的環(huán)境中學習,以下關于強化學習的描述,正確的是:()A.智能體通過隨機嘗試不同的動作來學習,不需要任何獎勵反饋B.獎勵函數(shù)的設計對智能體的學習效果沒有影響,只要有足夠的訓練時間就能學會最優(yōu)策略C.強化學習算法能夠保證智能體在有限的時間內找到絕對最優(yōu)的決策策略D.智能體在學習過程中會不斷調整策略以最大化累積獎勵22、人工智能中的優(yōu)化算法對于模型的訓練和性能提升起著關鍵作用。以下關于優(yōu)化算法的敘述,不正確的是()A.常見的優(yōu)化算法包括隨機梯度下降(SGD)、Adagrad、Adadelta等B.不同的優(yōu)化算法在收斂速度、穩(wěn)定性和對超參數(shù)的敏感性方面有所不同C.優(yōu)化算法的選擇只取決于模型的架構,與數(shù)據(jù)特點無關D.可以通過調整優(yōu)化算法的參數(shù)來提高模型的訓練效果23、人工智能中的聯(lián)邦學習技術旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型的協(xié)同訓練。假設多個機構擁有各自的私有數(shù)據(jù),需要共同訓練一個模型。以下哪種聯(lián)邦學習算法或框架在處理數(shù)據(jù)異構和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學習B.縱向聯(lián)邦學習C.聯(lián)邦遷移學習D.以上框架根據(jù)具體情況選擇24、在人工智能的文本生成任務中,假設要生成一篇邏輯連貫、語言通順的文章,以下關于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學習的文本生成模型可以學習語言的模式和規(guī)律,但可能存在重復和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當?shù)奈恼?5、人工智能在氣象預測中的應用具有挑戰(zhàn)性。假設要利用人工智能模型預測未來幾天的天氣情況,以下關于數(shù)據(jù)預處理的步驟,哪一項是最重要的?()A.對氣象數(shù)據(jù)進行標準化處理,使其具有相同的量綱B.去除異常值和缺失值,保證數(shù)據(jù)的質量C.對數(shù)據(jù)進行降維處理,減少計算量D.隨機打亂數(shù)據(jù)的順序,增加數(shù)據(jù)的隨機性二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能在智能人力資源離職預測中的技術。2、(本題5分)簡述模型解釋方法,如特征重要性分析。3、(本題5分)簡述人工智能在智能物流路徑規(guī)劃中的技術。4、(本題5分)簡述人工智能在法律領域的應用和挑戰(zhàn)。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)分析一個利用人工智能進行智能藝術品鑒定系統(tǒng),探討其如何識別藝術品的真?zhèn)魏蛢r值評估。2、(本題5分)分析一個利用人工智能進行智能藝術展覽策劃系統(tǒng),探討其如何根據(jù)展品和觀眾需求策劃展覽。3、(本題5分)研究一個利用人工智能進行輿情監(jiān)測和分析的系統(tǒng),分析其如何捕捉公眾意見和趨勢。4、(本題5分)分析一個利用人工智能進行室內裝修設計的案例,包括風格搭配和空間規(guī)劃。5、(本題5分)分析一個利用人工智能進行智能藝術市場趨勢預測系統(tǒng),探討其如何預測藝術作品的市場價值和需求。四、操作題(本大題共3個小題,共30分)1、(本題10分)使用Python的Scikit-l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論