版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆北京市西城區(qū)北京第四十四中學高考沖刺模擬數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多2.若均為任意實數(shù),且,則的最小值為()A. B. C. D.3.對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有4.設,,是非零向量.若,則()A. B. C. D.5.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.6.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.7.已知集合,集合,則()A. B. C. D.8.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.9.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.10.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數(shù)學家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.11.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.12.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.點P是△ABC所在平面內(nèi)一點且在△ABC內(nèi)任取一點,則此點取自△PBC內(nèi)的概率是____14.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.15.已知,,且,若恒成立,則實數(shù)的取值范圍是____.16.已知函數(shù),若的最小值為,則實數(shù)的取值范圍是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設,求數(shù)列的前項和.18.(12分)已知,(其中).(1)求;(2)求證:當時,.19.(12分)已知數(shù)列的前n項和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)若數(shù)列中去掉數(shù)列的項后余下的項按原順序組成數(shù)列,求的值.20.(12分)設等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設,,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.21.(12分)為了拓展城市的旅游業(yè),實現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數(shù)個十字路口,記為,現(xiàn)規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數(shù)學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知函數(shù)(為常數(shù))(Ⅰ)當時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)兩個圖形的數(shù)據(jù)進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運營崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質(zhì)等基礎知識的應用,著重考查了推理與運算能力,屬于基礎題.2、D【解析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉(zhuǎn)化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結(jié)合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點睛】本題考查函數(shù)在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.3、B【解析】
根據(jù)函數(shù)對稱性和單調(diào)性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數(shù)在上不可能是單調(diào)的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數(shù)性質(zhì)的綜合應用,結(jié)合對稱性和單調(diào)性的關系是解決本題的關鍵.4、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數(shù)量積及平面幾何知識,又能考查學生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.5、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應的事件有哪些結(jié)果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結(jié)果.6、A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當且僅當,即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數(shù)的最值,關鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.7、D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.8、D【解析】
由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當時,不符合題意,只須考慮的情形,當與圖象相切于時,由導數(shù)幾何意義,此時,故.故選:D【點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.9、A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎題.10、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.11、A【解析】
由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.【點睛】本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉(zhuǎn)化為乘法運算.12、A【解析】
由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結(jié)合幾何概型求得點取自三角形的概率.【詳解】設是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內(nèi)的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎題.14、【解析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標即可得到比值.【詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以OA∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以OA⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點睛】本題考查橢圓的基本性質(zhì),考查直線位置關系的判斷,方程思想,屬于中檔題.15、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值16、【解析】
,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當,,當且僅當時,等號成立.當時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進行比較,得到結(jié)果,題目較綜合,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設數(shù)列的公比為,,,解得(2),,,,.【點睛】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項公式是否符合等差乘以等比的形式來判斷.18、(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設當時,結(jié)論成立,即,兩邊同乘以3得:而∴,即時結(jié)論也成立,∴當時,成立.綜上原不等式獲證.19、(1)證明見解析,;(2)11202.【解析】
(1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項公式;(2)由(1)中的可求出,根據(jù)和求出數(shù)列,中的公共項,分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數(shù)列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數(shù)列是首項為2,公比為2的等比數(shù)列,所以,即.(2)根據(jù)(1)求解知,,,所以,所以數(shù)列是以1為首項,2為公差的等差數(shù)列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數(shù)列的定義,考查分組求和,屬于中檔題.20、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關于7的余數(shù)相同,不妨設為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數(shù),設,則,且,,,,所以,當,時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數(shù),因為,,所以,所以矛盾,即假設不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點睛】本題考查數(shù)列的綜合應用,以及反證法,求最值,屬于難題.21、(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據(jù)公式計算卡方值,再對應卡
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃車輛合同協(xié)議文本
- 大客戶采購合同的監(jiān)管措施
- 瓦工工種勞務分包合作協(xié)議
- 網(wǎng)絡技術(shù)服務合同示范文本樣本
- 個性化印刷采購協(xié)議
- 電子行業(yè)專用包裝材料購銷合同
- 拖車運輸服務協(xié)議
- 工程分包所需勞務合同
- 房屋買賣合同簽訂前的房屋質(zhì)量檢查
- 網(wǎng)絡打印機選購協(xié)議
- 2024-2025學年高二上學期期末數(shù)學試卷(基礎篇)(含答案)
- 直系親屬股權(quán)無償轉(zhuǎn)讓合同(2篇)
- 2023-2024學年廣東省廣州市白云區(qū)九年級(上)期末語文試卷
- 汽車吊籃使用專項施工方案
- 2024年典型事故案例警示教育手冊15例
- 中秋國慶慰問品采購投標方案
- 110kV變電站及110kV輸電線路運維投標技術(shù)方案(第二部分)
- 新高處安裝維護拆除作業(yè)專題培訓課件
- 培養(yǎng)教育考察記實簿
- 心可寧膠囊作用機理探析
- 工程管理基礎知識考試試題(最新整理)
評論
0/150
提交評論