版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江西省宜春市昌黎實(shí)驗(yàn)學(xué)校高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若集合,,則()A. B. C. D.2.過拋物線的焦點(diǎn)F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動(dòng)點(diǎn),,若,則的最小值是()A.1 B.2 C.3 D.43.若為過橢圓中心的弦,為橢圓的焦點(diǎn),則△面積的最大值為()A.20 B.30 C.50 D.604.已知命題:是“直線和直線互相垂直”的充要條件;命題:對(duì)任意都有零點(diǎn);則下列命題為真命題的是()A. B. C. D.5.已知復(fù)數(shù)和復(fù)數(shù),則為A. B. C. D.6.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B7.公比為2的等比數(shù)列中存在兩項(xiàng),,滿足,則的最小值為()A. B. C. D.8.過雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),則雙曲線C的離心率為()A. B. C.2 D.9.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.201710.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是()A. B.C. D.11.已知實(shí)數(shù),則下列說法正確的是()A. B.C. D.12.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.15二、填空題:本題共4小題,每小題5分,共20分。13.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.14.正四面體的各個(gè)點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長(zhǎng)為__________.15.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對(duì)陣,對(duì)陣,獲勝的兩隊(duì)進(jìn)入決賽爭(zhēng)奪冠軍,失利的兩隊(duì)爭(zhēng)奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—?jiǎng)t隊(duì)獲得冠軍的概率為______.16.在平面直角坐標(biāo)系xOy中,A,B為x軸正半軸上的兩個(gè)動(dòng)點(diǎn),P(異于原點(diǎn)O)為y軸上的一個(gè)定點(diǎn).若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長(zhǎng)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).(1)證明:;(2)求二面角的余弦值.18.(12分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.19.(12分)已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時(shí),.20.(12分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.21.(12分)如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動(dòng)點(diǎn),且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.22.(10分)已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.2、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點(diǎn)共線時(shí),即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點(diǎn)為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點(diǎn)共線時(shí),等號(hào)成立.故選:C.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意取最值的條件.3、D【解析】
先設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,在表示出面積,由圖象遏制,當(dāng)點(diǎn)A在橢圓的頂點(diǎn)時(shí),此時(shí)面積最大,再結(jié)合橢圓的標(biāo)準(zhǔn)方程,即可求解.【詳解】由題意,設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,則的面積為,當(dāng)最大時(shí),的面積最大,由圖象可知,當(dāng)點(diǎn)A在橢圓的上下頂點(diǎn)時(shí),此時(shí)的面積最大,又由,可得橢圓的上下頂點(diǎn)坐標(biāo)為,所以的面積的最大值為.故選:D.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.4、A【解析】
先分別判斷每一個(gè)命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當(dāng)時(shí),直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當(dāng)直線和直線互相垂直時(shí),,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當(dāng)時(shí),沒有零點(diǎn),所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點(diǎn)睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象,考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、C【解析】
利用復(fù)數(shù)的三角形式的乘法運(yùn)算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點(diǎn)睛】熟練掌握復(fù)數(shù)的三角形式的乘法運(yùn)算法則是解題的關(guān)鍵,復(fù)數(shù)問題高考必考,常見考點(diǎn)有:點(diǎn)坐標(biāo)和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,點(diǎn)的象限和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運(yùn)算,復(fù)數(shù)的模長(zhǎng)的計(jì)算.6、C【解析】試題分析:集合考點(diǎn):集合間的關(guān)系7、D【解析】
根據(jù)已知條件和等比數(shù)列的通項(xiàng)公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,注意為正整數(shù),如用基本不等式要注意能否取到等號(hào),屬于基礎(chǔ)題.8、C【解析】
由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)?,所以F是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.9、B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.10、D【解析】
由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn),作出圖象,由圖可得:點(diǎn)(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時(shí),k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn).作出函數(shù)y=f(x)的圖象,如圖,故點(diǎn)(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當(dāng)直線y=kx-和y=lnx相切時(shí),設(shè)切點(diǎn)橫坐標(biāo)為m,則k==,∴m=.此時(shí),k==,f(x)的圖象和直線y=kx-有3個(gè)交點(diǎn),不滿足條件,故所求k的取值范圍是,故選D..【點(diǎn)睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計(jì)算能力、觀察能力,屬于難題.11、C【解析】
利用不等式性質(zhì)可判斷,利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對(duì)于實(shí)數(shù),,不成立對(duì)于不成立.對(duì)于.利用對(duì)數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對(duì)于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點(diǎn)睛】利用不等式性質(zhì)比較大小.要注意不等式性質(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗(yàn)證的方法.12、B【解析】,∴,選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.14、【解析】
不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)?,所以,解得,故答案為:【點(diǎn)睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,15、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.16、【解析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長(zhǎng).詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,
∴t=,∴|OP|=.故答案為點(diǎn)睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點(diǎn),且,利用平面幾何知識(shí),可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點(diǎn),且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,,解得:,同理,平面的法向量,設(shè)二面角的大小為,則.即二面角的余弦值為.【點(diǎn)睛】本題主要考查線線垂直、線面垂直的轉(zhuǎn)化以及二面角的求法,還考查了轉(zhuǎn)化化歸的思想和推理論證、運(yùn)算求解的能力,屬于中檔題.18、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達(dá)式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因?yàn)榍€和相切,所以,即:;(2)設(shè),所以所以當(dāng)時(shí),面積最大值為【點(diǎn)睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.19、(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見解析.【解析】
試題分析:(1)由題得,根據(jù)曲線在點(diǎn)處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域?yàn)?,,因?yàn)榍€在點(diǎn)處的切線方程為,所以解得.令,得,當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設(shè),則要證,等價(jià)于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.20、(1);(2)【解析】
(1)對(duì)函數(shù)求導(dǎo),運(yùn)用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因?yàn)樵邳c(diǎn)與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時(shí),,在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),開口向上,對(duì)稱軸為,,所以在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),二次函數(shù)開口向下,且,所以在時(shí)有一個(gè)零點(diǎn),在時(shí),在時(shí),①當(dāng)即時(shí),在小于零,所以在時(shí)為減函數(shù),所以,符合題意;②當(dāng)即時(shí),在大于零,所以在時(shí)為增函數(shù),所以,舍.綜上所述:實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問題時(shí),注意利用導(dǎo)函數(shù)的正負(fù),特別是已知單調(diào)性問題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時(shí)分析好單調(diào)性再求極值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考地理一輪復(fù)習(xí)第七單元自然環(huán)境對(duì)人類活動(dòng)的影響考法精練含解析
- DB42-T 2358-2024 智慧界樁系統(tǒng)技術(shù)與工程建設(shè)規(guī)范
- (3篇)2024-2025年少先隊(duì)工作總結(jié)
- 安全監(jiān)理工作方法
- 二零二五年度品牌VI形象重塑與傳播合同
- 2024年全國(guó)交通安全日活動(dòng)總結(jié)例文(四篇)
- 乒乓球正手攻球技術(shù)教學(xué)設(shè)計(jì)
- 二零二五年度飛機(jī)租賃及航空器改裝合同3篇
- 二零二五版?zhèn)€人水利工程運(yùn)行維護(hù)施工合同2篇
- 2021-2021學(xué)年高中化學(xué)212脂肪烴第2課時(shí)炔烴脂肪烴的來源及應(yīng)用課件新人教版選修5
- 骨科手術(shù)后患者營(yíng)養(yǎng)情況及營(yíng)養(yǎng)不良的原因分析,骨傷科論文
- GB/T 24474.1-2020乘運(yùn)質(zhì)量測(cè)量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實(shí)施方案(一)
- 高血壓患者用藥的注意事項(xiàng)講義課件
- 特種作業(yè)安全監(jiān)護(hù)人員培訓(xùn)課件
- 太平洋戰(zhàn)爭(zhēng)課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
- 常暗之廂(7規(guī)則-簡(jiǎn)體修正)
評(píng)論
0/150
提交評(píng)論