版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省攀枝花市2025屆高考數(shù)學一模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.用電腦每次可以從區(qū)間內(nèi)自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.2.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.43.已知函數(shù),,若成立,則的最小值是()A. B. C. D.4.集合,則()A. B. C. D.5.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.8.下列不等式正確的是()A. B.C. D.9.設(shè),是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.10.已知復數(shù),則()A. B. C. D.211.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.12.已知平面向量,滿足,,且,則()A.3 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,所有項的二項式系數(shù)之和為256,則_______,項的系數(shù)等于________.14.設(shè),滿足約束條件,若目標函數(shù)的最大值為,則的最小值為______.15.若向量與向量垂直,則______.16.已知(為虛數(shù)單位),則復數(shù)________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.18.(12分)已知橢圓C的離心率為且經(jīng)過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.19.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項公式;(2)若,求數(shù)列的前n項和.20.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.21.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設(shè)點的極坐標為,求點到線段中點的距離.22.(10分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結(jié)合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.2、C【解析】
根據(jù)對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數(shù)的對稱性的應用,屬于中檔題.3、A【解析】分析:設(shè),則,把用表示,然后令,由導數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當時,,當時,,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數(shù)法求函數(shù)的最值,解題時學生可能不會將其中求的最小值問題,通過構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過二次求導,確定函數(shù)的單調(diào)區(qū)間也很容易出錯.4、D【解析】
利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎(chǔ)題.5、C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關(guān)鍵.6、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應用,屬于基礎(chǔ)題7、D【解析】
設(shè)等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎(chǔ)題.8、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、C【解析】
利用線線、線面、面面相應的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.10、C【解析】
根據(jù)復數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質(zhì),屬于容易題.11、D【解析】
設(shè)出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關(guān)系的應用,考查利用導數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導數(shù)或者利用函數(shù)值域的方法來求解最值.12、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數(shù)量積及向量模的運算,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、81【解析】
根據(jù)二項式系數(shù)和的性質(zhì)可得n,再利用展開式的通項公式求含項的系數(shù)即可.【詳解】由于所有項的二項式系數(shù)之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數(shù)等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.14、【解析】
先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數(shù)取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.15、0【解析】
直接根據(jù)向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學生的計算能力.16、【解析】
解:故答案為:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調(diào)遞增,當,,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關(guān)的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉(zhuǎn)化思想將條件合理轉(zhuǎn)化,得到關(guān)于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.18、(1)(2)【解析】
(1)根據(jù)橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設(shè)直線的斜率為,則直線的方程為,設(shè),由消去得,所以,由已知得,所以,由于點都在橢圓上,所以,展開有,又,所以,經(jīng)檢驗滿足,故直線的方程為.【點睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點的坐標求橢圓方程,考查直線和橢圓的位置關(guān)系,考查運算求解能力,屬于中檔題.19、(1),(2)【解析】
(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設(shè)數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點睛】本題主要考查了等比數(shù)列的基本量求解以及錯位相減求和等.屬于中檔題.20、(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點,可得,進而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設(shè)交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關(guān)系、三角形面積計算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計算求解能力,屬于中檔題.21、(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據(jù)兩點間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《修船專題講座》課件
- 甲狀腺功能異常的臨床護理
- 迪格奧爾格綜合征的臨床護理
- 長短腿矯正的臨床護理
- 《討論會建造流程V》課件
- 宮頸癌前病變的健康宣教
- 孕期低血糖的健康宣教
- 表皮囊腫的臨床護理
- 《機械設(shè)計基礎(chǔ) 》課件-項目一 機械基礎(chǔ)知識
- 《設(shè)備科安全培訓》課件
- 《文明禮儀概述培訓》課件
- 人教版(2024年新教材)七年級上冊英語各單元語法知識點復習提綱
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計規(guī)范
- 跨文化溝通心理學智慧樹知到期末考試答案2024年
- 《中華民族共同體概論》考試復習題庫(含答案)
- 復變函數(shù)論與運算微積智慧樹知到課后章節(jié)答案2023年下哈爾濱工業(yè)大學(威海)
- 機械工程測試與控制技術(shù)項目設(shè)計
- 干式變壓器檢修維護手冊.
- 傳染病漏報檢查、責任追究制度
- 電梯維保初級理論試題庫(含答案)
- 木材缺陷--種類圖片講解
評論
0/150
提交評論