版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省張掖市臨澤縣一中2025屆高考數(shù)學(xué)一模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等比數(shù)列若則()A.±6 B.6 C.-6 D.2.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.33.若雙曲線:()的一個(gè)焦點(diǎn)為,過(guò)點(diǎn)的直線與雙曲線交于、兩點(diǎn),且的中點(diǎn)為,則的方程為()A. B. C. D.4.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,它的終邊過(guò)點(diǎn),則的值為()A. B. C. D.5.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說(shuō):丙被錄用了;乙說(shuō):甲被錄用了;丙說(shuō):我沒(méi)被錄用.若這三人中僅有一人說(shuō)法錯(cuò)誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無(wú)法確定誰(shuí)被錄用了6.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F且EF=,則下列結(jié)論中錯(cuò)誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值7.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.8.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱 B.關(guān)于點(diǎn)對(duì)稱C.周期為 D.在上是增函數(shù)9.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.410.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項(xiàng)和,則()A.36 B.72 C. D.11.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽(yáng)馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.12.已知函數(shù)有兩個(gè)不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為數(shù)列的前項(xiàng)和,若,則____14.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.15.在平面直角坐標(biāo)系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點(diǎn),則弦的長(zhǎng)為_(kāi)________16.已知等比數(shù)列滿足,,則該數(shù)列的前5項(xiàng)的和為_(kāi)_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓過(guò)點(diǎn),設(shè)橢圓的上頂點(diǎn)為,右頂點(diǎn)和右焦點(diǎn)分別為,,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線交橢圓于,兩點(diǎn),設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.18.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.19.(12分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?0.(12分)在新中國(guó)成立70周年國(guó)慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國(guó)的熱愛(ài)之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點(diǎn).求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.22.(10分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點(diǎn),是棱上的點(diǎn),且.(1)證明:平面;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.2、D【解析】
畫(huà)出可行域,將化為,通過(guò)平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過(guò)時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題.一般第一步畫(huà)出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過(guò)平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫(huà)可行域時(shí),邊界線的虛實(shí)問(wèn)題.3、D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,結(jié)合焦點(diǎn)的坐標(biāo),可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點(diǎn)為,可得,解答,又由,即,解得,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:D.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程的求解,其中解答中屬于運(yùn)用雙曲線的焦點(diǎn)和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.4、B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過(guò)點(diǎn),∴,.∴.故選:.【點(diǎn)睛】本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計(jì)算能力.5、C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說(shuō)法錯(cuò)誤,乙,丙的說(shuō)法正確,滿足題意,若乙被錄用了,則甲、乙的說(shuō)法錯(cuò)誤,丙的說(shuō)法正確,不符合題意,若丙被錄用了,則乙、丙的說(shuō)法錯(cuò)誤,甲的說(shuō)法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點(diǎn)睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.6、D【解析】
A.通過(guò)線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計(jì)算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因?yàn)?,所以平面,又因?yàn)槠矫?,所以,故正確;B.因?yàn)?,所以,且平面,平面,所以平面,故正確;C.因?yàn)闉槎ㄖ?,到平面的距離為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因?yàn)?,所以異面直線所成角為,且,當(dāng),,取為,如下圖所示:因?yàn)椋运倪呅问瞧叫兴倪呅?,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計(jì)算,難度較難.注意求解異面直線所成角時(shí),將直線平移至同一平面內(nèi).7、C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.8、D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).9、C【解析】
計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.10、A【解析】
根據(jù)是與的等比中項(xiàng),可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點(diǎn)睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,是中檔題.11、B【解析】
利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽(yáng)馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).12、C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個(gè)不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個(gè)不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過(guò)分裂參數(shù)法和構(gòu)造新函數(shù),通過(guò)利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個(gè)不同的極值點(diǎn),,所以方程有兩個(gè)不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來(lái)求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計(jì)算能力,有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
當(dāng)時(shí),由,解得,當(dāng)時(shí),,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項(xiàng)公式.【詳解】當(dāng)時(shí),,即,當(dāng)時(shí),,兩式相減可得,即,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以.故答案為:【點(diǎn)睛】本題考查數(shù)列的前項(xiàng)和與通項(xiàng)公式的關(guān)系,還考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.14、1【解析】
按照個(gè)位上的9元的支付情況分類(lèi),三個(gè)數(shù)位上的錢(qián)數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類(lèi)加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類(lèi)做到不重不漏,分步做到步驟完整.15、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當(dāng)時(shí),到直線的距離,不成立,當(dāng)時(shí),與圓相交于,兩點(diǎn),到直線的距離,故答案為.【點(diǎn)睛】考查直線與圓的位置關(guān)系,相切和相交問(wèn)題,屬于中檔題.16、31【解析】設(shè),可化為,得,,,三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)直線過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為.【解析】
(1)因?yàn)闄E圓過(guò)點(diǎn),所以①,設(shè)為坐標(biāo)原點(diǎn),因?yàn)?,所以,又,所以②,將①②?lián)立解得(負(fù)值舍去),所以橢圓的標(biāo)準(zhǔn)方程為.(2)由(1)可知,設(shè),.將代入,消去可得,則,,,所以,所以,此時(shí),所以,此時(shí)直線的方程為,即,令,可得,所以直線過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為.18、(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標(biāo)方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(
II
)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用,即可求出結(jié)果.【詳解】(Ⅰ)由題意:曲線的直角坐標(biāo)方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因?yàn)橹本€的直角坐標(biāo)方程為:,又因曲線的左焦點(diǎn)為,將其代入中,得到,所以的極坐標(biāo)方程為.(Ⅱ)設(shè)橢圓的內(nèi)接矩形的頂點(diǎn)為,,,,所以橢圓的內(nèi)接矩形的周長(zhǎng)為:,所以當(dāng)時(shí),即時(shí),橢圓的內(nèi)接矩形的周長(zhǎng)取得最大值16.【點(diǎn)睛】本題考查了曲線的參數(shù)方程,極坐標(biāo)方程與普通方程間的互化,三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,極徑的應(yīng)用,考查學(xué)生的求解運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19、(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長(zhǎng)為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)所以平面取的中點(diǎn)的中點(diǎn)所以兩兩垂直,故以點(diǎn)為坐標(biāo)原點(diǎn),以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長(zhǎng)為因?yàn)樗运?所以,設(shè)平面的法向量是,因?yàn)?,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因?yàn)?,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問(wèn)題,屬于中檔題.20、(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】
(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時(shí),的最大值為.【點(diǎn)睛】本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.21、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)取的中點(diǎn)構(gòu)造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點(diǎn),連接,,是棱的中點(diǎn),底面是矩形,,且,又,分別是棱,的中點(diǎn),,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點(diǎn)是棱的中點(diǎn),,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點(diǎn)睛】本題主要考查
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《實(shí)驗(yàn)室生物安全》課件
- 2009年高考語(yǔ)文試卷(北京)(解析卷)
- 幼兒園科學(xué)活動(dòng)說(shuō)課稿
- 材料工程師工作總結(jié)
- 2023年-2024年安全教育培訓(xùn)試題含答案(B卷)
- 《電商營(yíng)銷(xiāo)推廣》課件
- 云計(jì)算商業(yè)模式-洞察分析
- 星系團(tuán)形成與演化-洞察分析
- 網(wǎng)絡(luò)電影與觀眾互動(dòng)-洞察分析
- 水平轉(zhuǎn)移的進(jìn)化意義-洞察分析
- QC成果解決鋁合金模板混凝土氣泡、爛根難題
- 管線管廊布置設(shè)計(jì)規(guī)范
- 提升教練技術(shù)--回應(yīng)ppt課件
- 招聘與錄用選擇題
- 《工資、薪金的個(gè)人所得稅的計(jì)算》教學(xué)設(shè)計(jì)
- 精品洲際酒店集團(tuán)皇冠酒店設(shè)計(jì)標(biāo)準(zhǔn)手冊(cè)
- 周視瞄準(zhǔn)鏡的初步設(shè)計(jì)-北京理工大學(xué)-光電學(xué)院小學(xué)期作業(yè)
- Writing寫(xiě)作教學(xué)設(shè)計(jì)
- 心房起搏電極的位置選擇ppt課件
- 四川省南充市2019-2020學(xué)年九年級(jí)上期末數(shù)學(xué)試卷(含答案解析)
- 上海市寶山區(qū)2019屆高三英語(yǔ)一模含答案
評(píng)論
0/150
提交評(píng)論